1) Length of a curve
2) Area of planar region
3) Area of curved Surface.
4) Volume
5) Mass etc,
1) Length of a curve
2) Area of planar region
3) Area of curved Surface.
4) Volume
5) Mass etc,
1) Triangle
2) Rectangle
3) Circle
etc
A1+A2+A3+A4= Required Area.
Ex 1: Area bounded between a line & a curve
y=1,y=x2
Ex 2: Area bounded between two curves
y=x2 and y2=x
Ex 3: Area bounded between 3-Curves
y=2x
y=2x−x2
x=2
Here y=2x−x2 is equivalent to circle
(x−1)2+y2=1
Ex 4:
Area bounded between 4-Curves
y2=4x,y2=16x
y=4x2,y=16x2
Definite Integral:-
A=∫abf(x)dx
a= lower limit
b= upper limit
Methods to compute Definite Integral (A):
Limit of finite sums
Anti Derivatives
Ex. Area bounded between
y=0,
y=1+x2,
x=0 and x=1.
A=∫01(1+x2)dx
A>L2=R1+R2
=21×(1+0)+21×(1+41)
=21[1+1+41]=1+81=89=1.125
U2=Rˉ1+Rˉ2
=21×(1+41)+21×(1+1)
=21(2+45)
=1+85=813=1.625
L2=1⋅125
U2= Upper Sum
L2= Lower sum
L2<A<U2
Lower sum
L4=41(1+0)
+41(1+161)
+41(1+41)
+41(1+169)
Therefore
L4=41[4+161+4+9]
=1+4×1614=3232+7=3239=1.218
L2=1.125
L2<L4<A
A<U4<U2
U4=41×(1+161)
+41×(1+41)
+41(1+169)
+41(1+1)
U4=41[4+161+4+9+16]
=1+4×1630=3247=1.46875
U2=1.625
L2<L4<A<U4<U2
L2<L4<…<Ln<A<Un<…<U4<U2
upper sum decreases
lower sum increases
limn→∞Ln=A=limn→∞Un
A=∫01(1+x2)dx
Ex. Let f(x) be a continous function on [a,b].
f(x)>0
f(x) is increasing.
A=Area=∫abf(x)dx
x0=a
xn=b
nb−a=h
xk=x0+hk
Lower sums
Ln=hf(x0)+hf(x1)+⋯+hf(xn−1)
Ln= ∑k=0n−1f(xk)h
Un=hf(x1)+hf(x2)+⋯+hf(xn)
Un=∑k=1nf(xk)h
Ln=∑k=0n−1f(xk)h,
Un=∑k=1nf(xk)h,
Ln<A<Un
n→∞limLn=n→∞lim∑k=0n−1f(xk)h
=∫abf(x)dx,
n→∞limUn=n→∞lim∑k=1nf(xk)h
=∫abf(x)dx
Ex.
Area between
y=0,y=1+x2,x=0 and x=1
Solution:
x0=0;xn=1
Since we are dividing [0,1] in n-equal intervals,
n1−0=h
xk=x0+kh, xk=0+n1k
xk=nk
Ln=h[n times1+1+⋯+1+n212+22+⋅+(n−1)2]
=n1[n+6n2(n−1)n(2n−1)]
{∵h=n1}
Ln=1+61(1−n1)nn(2−n1)
Ex: Area between y=e−x,y=0,x=0 and x=1.
n1−D=h
xk=x0+kh
xk=0+nk
x1=n1,x2=n2…
Ln=hf(x1)+hf(x2)+⋯+hf(xn)
Ln=h[e−n1+e−n2+⋯+e−1]
Ln=en−1h(1−e−1)
{n1=hn→∞ then h→0}
limn→∞ Ln=limh→0Ln=1−e−1lim(eh−1h) as h→0=1
We can compute that ∫01exdx=1−e−1
f(x)>0
Area Function:
A(x)=∫axf(x)dx
If f(x) is continuous on [a,b] and area function is defined as
A(x)=∫axf(x)dx
then A′(x)=f(x).
Let f(x) be a continuous function on [a,b] and F(x) is an anti derivative of f(x), i.e.,
F′(x)=f(x) then
∫abf(x)dx=F(x)∣x=ax=b=F(b)−F(a)
Show,∫011+x2dx =34= limn→∞ Ln
∫01(1+x2)dx
=F(x)∣x=0x=1
F′(x)=1+x2
dxd(x+31x3)=1+x2
⇒∫01(1+x2)dx
=x+3x3 ∣x=0x=1
=1+31−0=34
Ex:
∫01e−xdx=1−e−1
=limn→∞Ln
∫01e−xdx=−e−x∣x=0x=1
[∵dxd(−e−x)=e−x]
=−e−1−(−e−0)
=−e−1+1
=1−e−1.