Ex. Area bounded between
$y=0$,
$y=1+x^2$,
$x=0$ and $x=1$.
$ A=\int_0^1 (1+x^2) d x$
$ A>L_2=R_1+R_2$
$ =\frac{1}{2} \times(1+0)+\frac{1}{2} \times\left(1+\frac{1}{4}\right)$
$ =\frac{1}{2}\left[1+1+\frac{1}{4}\right]\\=1+\frac{1}{8}=\frac{9}{8}=1.125$