- Recall: equ. of the line passing through $\left(x_0, y_0\right)$ and having slope m b given by
- $ y-y_0=m\left(x-x_0\right)$
- $\therefore$ the equation of tangent at $P\left(x_0, y_1\right)$ is
- $ y-y_0=\left.\frac{d y}{d x}\right|_{\left(x_0, y_0\right)}\left(x-x_0\right)$.
- The equ. of normal at $P\left(x_0, x\right)$ is
- $y-y_0= \frac{-1}{\frac{dy}{dx}|_(x_0,y_0)} (x,x_0)$
- if $.\frac{d y}{d x}|_{(x, y)} \neq 0$.