- A particle moves along the curve $6 y=x^3+2$. Find the points on the curve at which the $y$-coordinate is changing 8 times as fast as the $x$-coordinate.
- Solution: To find: $(x, y)$ such that, $\frac{d y}{d t}=8 \frac{d x}{d t}$.
- $6 y=x^3+2 \Rightarrow 6 \frac{d y}{d t}=3 x^2 \frac{d x}{d t}$
- $\Rightarrow \frac{d y}{d t}=\frac{x^2}{2} \frac{d x}{d t}$
- $\frac{d y}{d t}=8 \frac{d x}{d t}$
- $\Rightarrow \frac{x^2}{2}=8$
- $\Rightarrow x^2=16 \Rightarrow x= \pm 4$
- When $x=4, y=\frac{4^3+2}{6}=\frac{64+2}{6}=11$
- When $x=-4, y=\frac{(-4)^3+2}{6}=\frac{-62}{6}=\frac{-31}{3}$
- So, the required points are $(4,11)$ and $\left(-4,-\frac{31}{3}\right)$.