- $ f^{\prime \prime}(c)=\lim _{x \rightarrow c}$
- $ \frac{f^{\prime}(x)-f^{\prime}(c)}{x-c} \cdot \text { But } f^{\prime}(c)=0$
- $\therefore \lim _{x \rightarrow c} \frac{f^{\prime}(x)}{x-c}=f^{\prime \prime}(c) \> 0$
- $\Rightarrow \exists h>0 \text { set. } \frac{f^{\prime}(x)}{x-c}>0 $
- for all $x \in(c-h, c+h), x \neq c$
- $\Rightarrow$ if $x \in(c, c+h)$ then $f^{\prime}(x)>0 $
- $[\therefore \text {Denominator} ~ x-c \> 0]$
- $\therefore$ By the list derivative test, $x=c$ is a pt. of local minima.
![alt text](https://imagedelivery.net/YfdZ0yYuJi8R0IouXWrMsA/c4c99b8d-5b20-415f-81bb-6f2b4f6fa300/public)