- What is the solution. to $p(x)=0$ ?
- Solution :
- We can use the IVT to find approximate solution as follows.
- $\begin{aligned}& p(x)=x^5+4 x-1 \\\\& p(0)=-1<0, p(1)=4>0\end{aligned} $
- By the IVT, we know $p(c)=0$ for same $c \in(0,1)$ Find the value at the mid point $\frac{1}{2}$.
- $p\left(\frac{1}{2}\right)=\frac{1}{32}+2-1=1+\frac{1}{32}>0$
- Since $p(0)<0, p\left(\frac{1}{2}\right)>0$, the zero must lie in $\left(0, \frac{1}{2}\right)$.
- $p\left(\frac{1}{4}\right)=\frac{1}{4^5}+1-1=\frac{1}{4^5}>0 \text {, so, ........... }\left(0, \frac{1}{4}\right)$