- Since $f$ in assumed to be continuous on the closed interval $[a, b]$, there exist
- $x_0, y_0 \in[a, b] \text { s.t. } f\left(x_0\right) \leq f(x) \leqslant f\left(y_0\right)$
- for all $x \in[a, b]$.
- $ {\underline {\text {Case I:}}}$
- $x_0$ and $y_0$ are the end points $a, b$.
- But since $f(a)=f(b)$, we must have that $f(x)$ is a constant on $[a, b]$
- $\Rightarrow f^{\prime}(x)=0 \quad \forall x \in(a, b)$
- So, we can choose any $c \in(a, b)$ to get $f^{\prime}(c)=0$