$e=1+\frac{1}{1 !}+\frac{1}{2 !}+\cdots>1+\frac{1}{1 !}=2$ .
Also, $e=1+\frac{1}{1 !}+\frac{1}{2 !}+\frac{1}{3 !}+\frac{1}{4 !}+\cdots$
$<1+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\cdots$
(because $\frac{1}{(n+1) !}<\frac{1}{2^n}$ for $n \geqslant 2$ )
Recall: Geometric series
$a+a r+a r^2+\cdots=\frac{a}{1-r} \text { if }|r|<1$
Putting $a=1, r = \frac{1}{2}$ gives
$1+\frac{1}{2}+\frac{1}{2^2}+\cdots=\frac{1}{1-1 / 2}=2$
$\therefore \quad e<1+2=3$
Fact: It can be proved that $e$ is an irrational number.
Also,
$ \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^n=e .$
$ \lim_{x \rightarrow 0}(1+x)^{1 / x}=e .$
Let’s calculate $\lim _{h \rightarrow 0} \frac{\exp (h)-1}{h}$
Notation: We write $\exp (x)$ as $e^x$.
$ e^h=\exp (h)=1+\frac{h}{1 !}+\frac{h^2}{2 !}+\cdots+\frac{h^h}{n !}+\cdots$
$ \Rightarrow \quad e^h-1=h+\frac{h^2}{2 !}+\frac{h^3}{3 !}+\cdots+\frac{h^h}{n !}+\cdots$
$ \Rightarrow \quad \frac{e^h-1}{h}=1+\frac{h}{2 !}+\frac{h^2}{3 !}+\cdots+\frac{h^{h-1}}{n !}+\cdots \text { for } h \neq 0 . $
$ \lim _{h \rightarrow 0} \frac{e^h-1}{h}=1$