- Putting $x=1$, we get
- $\begin{aligned}\exp (1) & =1+\frac{1}{1 !}+\frac{1}{2 !}+\cdots+\frac{1}{n !}+\cdots \\& =\sum_{k=0}^{\infty} \frac{1}{k !}\end{aligned}$
- We know that $\exp (1)$ in a real, and we denote this by $e$ (Euler's constant).
- So, $e=\exp (1)=\sum_{k=0}^{\infty} \frac{1}{k !}$
- We can show that $2