We saw that (i) dxd(sin−1x)=1−x21
(ii) dxd(tan−1x)=1+x21
We know that sin−1x+cos−1x=2π
tan−1x+cot−1x=2π
sec−1x+cosec−1x=2π
∴cos−1x=2π−sin−1x
⇒dxd(cos−1x)=0−dxd(sin−1x)=−1−x21
similarly dxd(cot−1x)=−dxd(tan−1x)=−1+x21
Let's calculate dxd(sec−1x).
Let y=sec−1x the x=secy
Diff. w.r.t. x, we got
1=dxd(secy)=dyd(secy)⋅dxdy (by Chain rule)
=secytanydxdy
⇒dxdy=secytany1
Since, secy=x,tan2y=sec2y−1=x2−1
⇒tany=±x2−1
∴dxd(sec−1x)=secytany1={xx2−11 if x⩾1−xx2−11 if x⩽1
Since ∣x∣={x if x⩾0−x if x<0,
dxd(sec−1x)=∣x∣x2−11 if ∣x∣⩾1
Hence, dxd(cosec−1x)=∣x∣x2−1−1 if ∣x∣⩾1
Sometimes we have an equation relating
y to x, but it is difficult to write explicitly y as a f(x). of x.
For example: y+siny=x
Find dxdy.
Here instal of trying to write y as a function of x, we will do implicit diff. as follows.
y+siny=x
⇒dxd(y+siny)=dxd(x)
⇒dxdy+dxd(siny)=1
⇒dxdy+dyd(siny)dxdy=1 (By Chain rule)
⇒dxdy[1+cosy]=1
⇒dxdy=1+cosy1, provided cosy =−1.
Note that by doing implicit differentiation, we need not get dxdy as a function of x only.
We define
exp(x)=1+1!x+2!x2+⋯+n!xn+⋯⋅
=∑n=0∞n!xn
= limn→∞∑k=0nk!xk
Fact: The above series converges (to a finite real number) for every x∈R.
Thus exp(x) is defined for every real no x.
(7) exp(x+y)=exp(x)exp(y)
(Compare with am+n=am⋅an if m,n∈N ) Using (7) and (1), we get
exp(−x)=exp(x)1
(∵1=exp(0)=exp(x+(−x))=exp(x)exp(−x))
So, (6) follows from (5).
Putting x=1, we get
exp(1)=1+1!1+2!1+⋯+n!1+⋯&=k=0∑∞k!1
We know that exp(1) in a real, and we denote this by e (Euler's constant).
So, e=exp(1)=∑k=0∞k!1
We can show that 2<e<3
(In fact, e≈2.718… )
e=1+1!1+2!1+⋯>1+1!1=2.
Also, e=1+1!1+2!1+3!1+4!1+⋯
<1+1+21+221+231+⋯⋅ (because (n+1)!1<2n1 for n⩾2 )
Recall: Geometric series a+ar+ar2+⋯=1−ra if ∣γ∣<1
Putting a=1,r=21 gives
1+21+221+⋯=1−x21=2
∴e<1+2=3
Fact: It can be proved that e is an irrational number. Also,
n→∞lim(1+n1)n=e.&x→0lim(1+x)1/x=e.
Let's calculate limh→0hexp(h)−1
Notation: We write exp(x) as ex
Derivative of ex=exp(x).
f(x)=ex
f′(x)=limh→0hf(x+h)−f(x)
=limh→0hex+h−ex=limh→0hexeh−ex
=exlimh→0(heh−1)=ex.
So, dxd(ex)=ex