Recall: Composition of two functions.
Notation: (f∘g)(x)=f(g(x))
Suppose g(x) in differentiable at x=a and f(x) is differentiable at x=g(a).
Then is (f∘g)(x) differentiable at x=a ?
If so, (f∘g)′(a)= ?
Let k(x)=(f∘g)(x)=f(g(x))
To check whether k(x) is differentiable at x=a, we need to 100k at the limit limh→0hk(a+h)−k(a)
i.e. limh→0hf(g(a+h))−f(g(a))
If g(a+h)−g(a)=0 for all small h=0 then
hf(g(a+h))−f(g(a))=g(a+h)−g(a)f(g(a+h))−f(g(a))⋅hg(a+h)−g(h)
if g(a+h)−g(a)=0
we are given that g is diff. at a, so
limh→0hg(a+h)−g(a)=g′(a)
Also, f in diff. at g(a), so
limh→0g(a+h)−g(a)f(g(a+h))−f(g(a))=f′(g(a))
because as h→0,g(a+h)→g(a)(∵g is continuous at a)
∴limb→g(a)y−g(a)f(y)−f(g(a)=f′(g(a)).
So, if g(a+h)=g(a) for small h, then
(f∘g)′(a)=f′(g(a))g′(a).
In fact, the above formula is always true.
(Chain Rule): Let f & g be functions such that f is diff. at g(a) and g is diff. at a. Then f∘g is diff.
at a and the derivative is given by
(f∘g)′(a)=f′(g(a))g′(a)
We need to show that
limh→0hf(g(a+h))−f(g(a))=f′(g(a))g′(a)
Define ϕ(y)={y−g(a)f(y)−f(g(a))f′(g(a)) if y=g(a) if y=g(a)
y→g(a)limϕ(y)=y→g(a)limy−g(a)f(y)−f(g(a))=f′(g(a))[∵f is ff at g(a)]=ϕ(g(a))
⇒ϕ is continuous at g(a).
(if y=g(a) then ϕ(y)=y−g(a)f(y)−f(g(a))
⇒f(y)−f(g(a))=ϕ(y)[y−g(a)]
if y=g(a), the L.H.S =0= R.H.S. )
Put y=g(a+h) :
f(g(a+h))−f(g(a))=ϕ(g(a+h))[g(a+h)−g(a)]
In R.H.S., limh→0hg(a+h)−g(a)=g′(a)
and limh→0ϕ(g(a+h))=ϕ(g(a))[∵ϕ is cont. at g(a)]
=f′(g(a))
∴limh→0h(f∘g)(a+h)−(f∘g)(a)=f′(g(a))g′(a).
ie. (f∘g)′(a)=f′(g(a))⋅g′(a)
This proves the chain rule.
g(a+h)−g(a)=0 might not hold true for small enough h.
e.g. g(x)=x2sin(x1),x=0, otherwise g(x)=0
Claim: g is diff. at 0 & g′(a)=0
limh→0(hg(0+h)−g(0))=limh→0hh2sin(h1)−0
=limh→0hsin(h1)=0
sinh1≤1⇒0≤hsin(h1)∣≤∣h∣
By Sandwich thin., limh→∞hsin(hh)=0)
But, g(mπ1)=0 for all m ∈Z{0}
because sin(mπ)=0∀m∈Z
For any δ>0,mπ1∈(−δ,δ) for some m ∈Z.
Write y=g(x) & u=f(y)
ie. u=f(g(x))=(f∘g)(x)
The chain rule (f∘g)′(x)=f′(g(x))g′(x)
ie. dxdu=dydu⋅dxdy(y=g(x)⇒dxdy=g′(x) u=f(y)⇒dydu=f′(y))
u=f(y);y=g(x)
dxdu=dydu⋅dxdy
Let f(x)=(x2+1)3. Find f′(x).
→ Expand (x2+1)3=x6+3x4+3x2+1
∴f′(x)=6x5+12x3+6x
→ Use product rule: f(x)=(x2+1)(x2+1)2
f′(x)=2x(x2+1)2+(x2+1)⋅dxd(x2+1)2
dxd(x2+1)2=2x(x2+1)+(x2+1)⋅2x
=4x(x2+1)
∴f′(x)=2x(x2+1)2+4x(x2+1)2
=6x(x2+1)2
=6x(x4+2x2+1)
Using chain rule:
f(x)=(x2+1)3=(g(x))3;g(x)=x2+1
By chain rule, f′(x)=3(g(x))2⋅g′(x)
=3(x2+1)2⋅2x&=6x(x2+1)2
or, y=(x2+1)3=u3;u=x2+1
dxdy=dudy⋅dxdu=3u2⋅2x
=3(x2+1)2⋅2x
=6x(x2+1)2
→ Expand (x2+1)3=x6+3x4+3x2+1
∴f′(x)=6x5+12x3+6x
→ Use product rule: f(x)=(x2+1)(x2+1)2
f′(x)=2x(x2+1)2+(x2+1)⋅dxd(x2+1)2
dxd(x2+1)2=2x(x2+1)+(x2+1)⋅2x
=4x(x2+1)
∴f′(x)=2x(x2+1)2+4x(x2+1)2
=6x(x2+1)2
=6x(x4+2x2+1)
Find dxd[sin(x2)]
y=sinu,u=x2
dudy=cosu,dxdu=2x
dxdy=dudy⋅dxdu=cos(x2)⋅2x
Find dxd[sin2(x3)]
y=sin2(x3)=[sin(x3)]2
dxdy=2sin(x3)⋅dxd[sin(x3)]=2sin(x3)⋅cos(x3)⋅3x2
y=sin(sin(cos(x3+x)))
dxdy=cos(sin(cos(x3+x)))⋅dxd[sin(cos(x3+x))]
= cos(sin(cos(x3+x)))⋅cos[cos(x3+x)].(−sin(x2+x))⋅(3x2+1)
dxd(sin−1x),dxd(cos−1x),dxd(tan−1x),⋯
Let y=f(x)
Suppose f(x) has an inverse g(x).
ie. f(g(x))=g(f(x))=x.
y=f(x)⇔x=f−1(y)=g(y).
∴g′(y)=dydx
x=f(g(x))⇒1=dxd[f(g(x))]=f′(g(x))⋅g′(x)
So, if f′(g(x))=0 then g′(x)=f′(g(x))1
If f−1 denotes the inverse of f, then
dxd[f−1(x)]=f′(f−1(x)1]⋅f′(f′(x))=0.
eg. dxd[sin−1x]=f′(sin−1x)1, where f(x)=sinx
=cos(sin−1x)1
If y=sin−1x;x=siny
⇒cos2y=1−sin2y=1−x2
⇒cosy=±1−x2.
sin−1x is defined for x∈[−1,1]
sin−1x∈(0,2π) if x∈(0,1)
sin−1x∈(−2π,0) if x∈(−1,0)
But cosθ is positive if θ∈(−2π,2π).
∴cos(sin−1x)>0∀x∈(−1,1).
∴cos(sin−1x)=1−x2∀x∈(−1,1)
∴dxd[sin−1x]=1−x21
dxd[tan−1x]=?
y=tan−1x⇔x=tany
∴dydx=sec2y
∴dxdy=dydx1=sec2y1=1+tan2y1=1+x21
∴dxd[tan−1x]=1+x21