- $\begin{gathered}\frac{f(g(a+h))-f(g(a))}{h}=\frac{f(g(a+h))-f(g(a))}{g(a+h)-g(a)} \cdot \frac{g(a+h)-g(h)}{h} \\ \end{gathered}$
- $\text { if } g(a+h)-g(a) \neq 0$
- we are given that $g$ is diff. at $a$, so
- $\lim _{h \rightarrow 0} \frac{g(a+h)-g(a)}{h}=g^{\prime}(a)$
- Also, $f$ in diff. at $g(a)$, so
- $\lim _{h \rightarrow 0} \frac{f(g(a+h))-f(g(a))}{g(a+h)-g(a)}=f^{\prime}(g(a))$
- because as $h \rightarrow 0, g(a+h) \rightarrow g(a)(\because g$ is continuous at a)
- $\therefore \lim _{b \rightarrow g(a)} \frac{f(y)-f(g(a)}{y-g(a)}=f^{\prime}(g(a))$.
- So, if $g(a+h) \neq g(a)$ for small $h$, then
- $(f \circ g)^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a) \text {. }$
- In fact, the above formula is always true.