- $\therefore \lim _{x \rightarrow 0} f(x)=0$
- Also, $f(0)=|0|=0$
- $ \therefore f(0)=\lim _{x \rightarrow 0} f(x)$, hence $f(x)$ is cont. at $x=0$.
- Is $f(x)$ differentiable at $x=0$ ?
- Does $\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$ exist?
- For h ≠ 0, ${\frac{f(0+h)-f(0)}{h}}=\frac{f(h)-f(0)}{h}=\frac{|h|-0}{h}=\frac{|h|}{h}$ $ ={\begin{cases}1 , if h>0 \\\ -1 , if h<0\end{cases}}$
- $ \therefore L.H.S. \neq R.H.S.$ of $ ~ \frac{f(0+h)-f(0)}{h}$