∴limx→0f(x)=0
Also, f(0)=∣0∣=0
∴f(0)=limx→0f(x), hence f(x) is cont. at x=0.
Is f(x) differentiable at x=0 ?
Does limh→0hf(0+h)−f(0) exist?
For h ≠ 0, hf(0+h)−f(0)=hf(h)−f(0)=h∣h∣−0=h∣h∣ ={1,ifh>0−1,ifh<0
∴L.H.S.=R.H.S. of hf(0+h)−f(0)
Hence, limh→0hf(0+h)−f(0) does not exist.
∴f(x) is not differentiable at x=0.
Conclusion: f(x) continuous at x=a
does not imply that f(x) is differentiable at x=a.
Theorem: If f(x) is differentiable at x=a then f(x) must be continuous at x=a.
Proof: Since f(x) is differentiable at x=a, f′(a)=limh→0hf(a+h)−f(a) exists.
To check the continuity at x=a, we need
f(a)=limx→af(x)=limh→0f(a+h)
( Put x=a+h, ie. h=x−a,
As x→a,h→0)
limh→0f(a+h)=f(a)⇔limh→0[f(a+h)−f(a)]=0
But, for h=0,f(a+h)−f(a)=h[hf(a+h)−f(a)]
Since limh→0h=0 and limh→0hf(a+h)−f(a)=f′(a)
by the product rule for limits, we have
limh→0[f(a+h)−f(a)]=0⋅f′(a)=0
Hence f(x) is cont. at x=a.
dxd[f(x)g(x)]=f′(x)g(x)+f(x)g′(x)
provided f′(x) & g′(x) exists.
Pf:
Let u(x)=f(x)g(x).
For h=0,hu(x+h)−u(x)
=hf(x+h)g(x+h)−f(x)g(x)
=h[f(x+h)g(x+h)−f(x)g(x+h)]+[f(x)g(x+h)−f(x)g(x)]
∴hu(x+h)−u(x)=[hf(x+h)−f(x)]g(x+h)
+f(x)[hg(x+h)−g(x)]
Now, limh→0hf(x+h)−f(x)=f′(x)
limh→0g(x+h)=g(x)
[∵g is continuous at x since it is given to be differentiable at x]
similarly, limh→0hg(x+h)−g(x)=g′(x)
∴u′(x)=limh→0hu(x+h)−u(x)=f′(x)g(x)+f(x)g′(x)
dxd[f(x)g(x)]=f′(x)g′(x)
e.g. f(x)=g(x)=x
then f′(x)=1=g′(x)
but f(x)g(x)=x2
So, dxd[f(x)g(x)]=dxd(x2)=2x=f′(x)g′(x)
e.g.
f(x)=x3,f′(x)=?
f(x)=dxd(x2)⋅x+x2dxd(x)
=2x⋅x+x2⋅1
=2x2+x2=3x2
Calculate dxd(xn), where n∈N.
f(x)=xn
For h=0,hf(x+h)−f(x)
=h(x+h)n−xn
=hxn+(1n)xn−1h+(2n)xn−2h2+⋯+hn−xn
=hh[nxn−1+(2n)xn−2h+⋯+hn−1]
=nxn−1 as h → 0
∴dxd[xn]=nxn−1 for n ∈N
eg. dxd(x2)=2x2−1=2x
dxd(x3)=3x3−1=3x2
dxd(x4)=4x3.
Remark: The above formula for derivative of xn actually holds true for any n∈R. This will be proved later.
hf(x+h)−f(x)=hx+h1−x1
=hx(x+h)x−(x+h)=hx(x+h)−h
=x(x+h)−1,h=0.
∴limh→0hf(x+h)−f(x)=x2−1∀x=0.
dxd(x1)=x2−1,x=0
Note that this agrees with same formula for
dxd(xn)=nxn−1.
For n=−1, this gives dxd(x−1)=(−1)x−1−1=−x−2=x2−1
We can use product rule to calculate dxd(x−2)ordxd(x−3), etc.
eg.
dxd(x−2)=dxd(x1⋅x1)
=(x2−1)⋅x1+x1⋅(x2−1)
=x3−2.
Suppose f(x) is differentiable at x=a
and let g(x)=f(x)1 & f(a)=0
Then g′(a)=(f(a))2−f′(a)
Proof:
hg(a+h)−g(a)=hf(a+h)1−f(a)1
=hf(a)f(a+h)f(a)−f(a+h)
=−f′(a)[hf(a+h)−f(a)]⋅f(a)f(a+h)1
∴g′(a)=(f(a))2−f′(a)
(Quotient Rule)
dxd[g(x)f(x)]=[g(x)]2f′(x)g(x)−f(x)g′(x)
Pf:
dxd[g(x)f(x)]=dxd[f(x)⋅g(x)1]
(Using Product Rule )
=f′(x)⋅g(x)1+f(x)dxd[g(x)1]
=g(x)f′(x)+f(x)[(g(x))2−g′(x)]
=(g(x))2f′(x)g(x)−f(x)g′(x)
∴dxd[x]=2x1,x>0
Again note that, if we write x=x1/2
dxd(x)=2x1=21⋅x−1/2=21x21−1
This also agrees with the formula
dxd[xn]=nxn−1
Derivative of f(x)=sin(x)
hf(x+h)−f(x)=hsin(x+h)−sinx
Recall:
sinC−sinD=2cos2C+Dsin2C−D
sin(x+h)−sinx=2cos22x+hsin2h
∴hf(x+h)−f(x)=h2cos(22x+h)sin2h
=cos(x+2h)⋅h/2sin(h/2) (∵limh→0hsinh=1)
∴limh→0hf(x+h)−f(x)=cosx.1
∴dxd[sinx]=cosx
eg. Derivative of cosx.
dxd(cosx)=limh→0hcos(x+h)−cosx
=−sinx [Exercise]