Prove that log345 lies in (31,21).
ie. to prove 31<log345<21
Soln. 31<log345 & log345<1/2,1<3log345 & 2log345<1
nlogam=loga(mn), i.e. 1<log3453 & log3452<1
i.e. 1<log3453 & log3452<1,logaa=1 a>0, a # 1
log3434<log34125 & log3425<log3434,
m<n⟺logam<logan
34<125 ⟺log3434<log34125
25<34 ⟺log3425<log3434,31<log345<21
Show that ∑r=245logrn1=logn(45)!
m! = m(m-1)....2x1.
Soln. (Change of base),logba=logcblogca,c>0, c=1
logn(45)!=logn(45)(44)....(2)(1)
Multiplication law
loga(mn)=logam+logan,loga(mn)=logam+logan
logn(45)!=logn45+logn44+....+logn2+logn1,=∑r=145lognr
=∑r=245lognr
=∑r=245logrn1
lognr=logrn1,logrnr=1,loga1=0
Given n4<10n - far fixed positive integer n≥2
Show that (n+1)4<10n+1.
Soln. n4<10n⟺log10n4<log1010n
⟺4log10n<nlog1010
4log10n<n⟶ (1)
10n+1(n+1)4<1(T⋅P.T.)
log10[10n+1(n+1)4]<log101=0
log10[10n+1(n+1)4]<0
loga(nm)=logam−logan
LHS=log10(n+1)4−log1010n+1
=4log10(n+1)−(n+1)(log1010)
=4log10(n(1+n1))−(n+1)
=4log10n+4log10(1+n1)−n−1
from (1)<n+4log10(1+n1)−x−1
n⩾2⇔21⩾n1⇔(1+21)⩾(1+n1)
⇔log10(1+21)⩾log10(1+n1)
LHS <4log10(1+n1)−1,⩽4log10(1+21)−1
LHS <4log10(1+n1)−1,⩽4log10(1+21)−1
=4log10(23)−1,=log10(23)4−log1010
=log10[16×1081]
=log10(16081)
=log1081−log10160<0
81<160⇔log1081<log10160
y−zlogx=z−xlogy=x−ylogz
Show that xy+z+yz+x+zx+y⩾3
Soln. y−zlogax=z−xlogay=x−ylogaz=k
logax=k(y−z)
logay=k(z−x)
logaz=k(x−y)
logax=k(y−z)⇔x=ak(y−z)
logay=k(z−x)⇔y=ak(z−x)
logaz=k(x−y)⇔z=ak(x−y)
31(ak(y−z)(y+z)+ak(z−x)(z+x)+ak(x−y)(x+y))
=31(ak(y2−z2)+ak(z2−x2)+ak(x2−y2))
A.M. ⩾ G.M.
⩾(ak(y2−z2)ak(z2−x2)ak(x2−y2))1/3
A.M. ⩾ G.M.
⩾(ak(y2−z2)ak(z2−x2)ak(x2−y2))1/3)
=(ak[y2−z2+zk−x2+x2−yk])1/3
= 1
31(xy+z+yz+x+zx+y)≥1
log0.1(sin2x)+log10(cosx)=log107
Solve for x
Soln. log0.1(sin2x)=log(10)−1(sin2x)
=−log10(sin2x))
logbma=m1logba
log10(cosx)−log10(sin2x)=log107
log10(sin2xcosx)=log107
sin2xcosx=7
2sinxcosxcosx=7
sinx1=14
sinx=141
x=sin−1(141)
x=nπ+(−1)nsin−1(141)
sin2x>0 & cosx>0
x=nπ+((−1)nsin−1(141))
sin2x>0 & cosx>0
sinx>0 & cosx>0
x lies in the first quadrant
x=2mπ+sin−1(141)
logcosxsinx+logsinxcosx=2
Solve for x a > 0 a = 1
Soln. logacosxlogasinx+logasinxlogacosx=2
(logasinx)2+(logacosx)2−2(logacosx)(logasinx)=0
(logasinx−logacosx)2=0
logasinx=logacosx
⇔sinx=cosx
⇔tanx=1
x=4π+nπ
sinx=1cosx=1sinx>0cosx>0
x lies in the first quadrant
x=nπ+(−1)n2π,2nπ
x=2mπ+4π