- Show that $\sum_{r=2}^{45} \frac{1}{\log _{r} n}=\log _n(45) !$
- m! = m(m-1)....2x1.
- Soln. (Change of base),$log_b a =\frac{log_c a}{log_c b}$,$c>0, $ $c \neq 1$
- $\log_n(45)! = log_n(45)(44)....(2)(1)$
- Multiplication law
- $\log_a(mn)=log_am + log_a n$,$\log_a(mn) = \log_a m + \log_a n$
- $\log_n(45)! = \log_n 45 + \log_n 44 +.... + \log_n^2 + \log_n 1$,$=\sum_{r=1}^{45} \log_n r$
- $=\sum_{r=2}^{45} \log_nr$
- $=\sum_{r=2}^{45} \frac{1}{log_r n}$
- $\log_n r= \frac{1}{log_r n}$,$\log_r n r\neq 1$,$\log_a1 =0 $