-
If $a^2=b^3=c^5=d^6$,
-
show that $\log _d(a b c)=\frac{31}{5}$
-
Soln. $a^2=b^3=c^5=d^6=k$ (say)
-
$a=k^{1 / 2}, b=k^{1 / 3}, c=k^{1 / 5}, d=k^{1 / 6}$
-
$\log _d(a b c) =\log _{k^{1 / 6}}\left(k^{1 / 2} k^{1 / 3} k^{1 / 5}\right) $
-
$=\log _{k^{1 / 6}}\left(k^{1 / 2+1 / 3+1 / 5}\right) $,$=\log _{k^{1 / 6}}\left(k^\frac{15+10+6}{30}\right) $
-
$=\log _{k^{1 / 6}}\left(k^{31 / 30}\right) $,$=\frac{31}{30} \log _{k^{1 / 6}} k$
-
$=\frac{31}{30} \log _{k^{1 / 6} k} $,$=\frac{31}{30} \frac{\log _k k}{\log _k k^{1 / 6}} $
-
$=\frac{31}{30} \frac{1}{(1 / 6) \log _k k} $,$=\frac{31}{30} \times \frac{6}{1} \times 1=\frac{31}{5}$
-
(Change of base),$\left(\log _a b=\frac{\log _c b}{\log _c a}\right)$