b−clogx=c−alogy=a−blogz
To show xb+cyc+aza+b=1,
loga1=0
Soln. log10(xb+cyc+aza+b)=log101,
logx(mnp)
⇔log10(xb+c)+log10(yc+a)+log10(za+b)=0
⇔(b+c)log10x+(c+a)log10y+(a+b)log10z=0
b−clogx=c−alogy=a−blogz=w
logamn=nlogam
b−clog10x=c−alog10y=a−blog10z=w
log10x=w(b−c)
log10y=w(c−a)
log10z=w(a−b)
Putting ⊛⊛ in ⊛
(b+c)(b−c)w+(c+a)(c−a)w+(a+b)(a−b)w=0
w(b2−c2+c2−a2+a2−b2)=0
w⋅0=0
If a2=b3=c5=d6,
show that logd(abc)=531
Soln. a2=b3=c5=d6=k (say)
a=k1/2,b=k1/3,c=k1/5,d=k1/6
logd(abc)=logk1/6(k1/2k1/3k1/5)
=logk1/6(k1/2+1/3+1/5),=logk1/6(k3015+10+6)
=logk1/6(k31/30),=3031logk1/6k
=3031logk1/6k,=3031logkk1/6logkk
=3031(1/6)logkk1,=3031×16×1=531
(Change of base),(logab=logcalogcb)
log211log25−log411log45
Soln. =log115−log115=0 .
logv4u3⋅logwv5⋅logu5w4=3?
Soln. LHS =logvu3/4⋅logwv5⋅loguw4/5
=(43×5×54)(logvu⋅logwv⋅loguw)
=3(logvu⋅logwv⋅loguw)
=3(logavlogau⋅logawlogavlogaulogaw)
=3×1=3
log67=1+log23log27
Soln. LHS=log67
=log26log27
=log2(2×3)log27
=log22+log23log27
=1+log23log27
x=log126y=log1812 & z=log2418
To show 1+xyz=2yz
Soln. LHS=1+xyz
=1+log126⋅log1812⋅log18
=1+log12log6⋅log18log12⋅log24log18
=1+log24log6,=1+log246
=log2424+log246(1=log2424)
=log24(24×6)=log24(144),
RHS =2yz
=2log1812⋅log2418
=2log18log12log24log18,=2log2412=log24(144)
logababc1+logbcabc1+logacabc1=2 (P.T.)
×(logab=logbalogbb=logba1)
Soln. LHS=logabcab+logabcbc+logabcac
=logabc(ab⋅bc⋅ac)
=logabc(a2b2c2)
=logabc(abc)2
=2logabc(abc)=2= RHS
x=1+loga(bc)=logaa+loga(bc)=loga(abc)
y=1+logb(ac)=logbb+logb(ac)=logb(abc)
z=1+logc(ab)=logcc+logc(ab)=logc(abc)
show that xy+yz+zx=xyz
Soln. xyzxy+yz+zx=1
∴z1+x1+y1=1
Substituting the values of x,y & z, we get
logc(abc)1+loga(abc)1+logb(abc)1=1
=logabcc+logabca+logabcb
=logabc(abc)=1
logax+loga2x2+loga3x3+⋯+logapxp=plogax.
Soln. logambn=nlogamb
=nlogbam1
=mnlogba1
=mnlogab.
logambn=mnlogab
logamxm=mmlogax=logax
logax+22logax+33logax+…+pplogax
=(1+1+…+1)logax
=plogax= RHS