Solve for x
loga(x+3)+loga(x−3)=loga16
Soln. loga(x+3)(x−3)=loga16
(Multiplication law)
logam=logan⇔m=n
(x+3)(x−3)=16
x2−9=16
x2−25=0
(x−5)(x+5)=0
x=−5,5
(x+3)(x−3)
case I. x=−5(−5+3)(−5−3)=(−2)(−8)=16
loga(−5+3)+loga(−5−3)=
loga(−2)+loga(−8) x=−5 is not solving the expression.
Case 2. x=5
loga(x+3)+loga(x−3)=loga16
loga8+loga2=loga16
loga(8×2)=loga16,
loga16=loga16
x=5 is the solution far given equation.
Solve: 2log10x=1+log10(x+1011)
Soln. 1=log1010
log10x2=log1010+log10(x+1011) ×log10x2
=log10(10(x+1011))
x2=10(x+1011)
logam=logan⇔m=n
x2=10x+11
x2−10x−11=0
x2−11x+x−11=0
(x−11)(x+1)=0
x=−1,11
2log10(−1)−is not defined
Case 1. x=−1 is not solution to this equation.
Case 2. x=112log1011=1+log10(11+1011)
log10121=1+log10(10110+11)
=1+log10(10121)
=1+log10(121)−log1010
x=11 is the only solution to this equation:
loga(6x+y)=21(logax+logay)
Show that yx+xy=34
Solution. loga(x+y)=?logax+logay
loga(xy)=logax+logay
log(ab)=log(cd)
loga(6x+y)=21loga(xy)→2loga(6(x+y))=loga(xy)
loga(36(x+y)2)=logaxy
36(x+y)2=xy,→x2+y2+2xy=36xy,
x2+y2=34xy→xyx2+y2=34,
yx+xy=34,
logam=logan,⇔m=n
Prove that log(a+2b)=
21(loga+logb)+2log2
Solution. Givena2−12ab+4b2=0
To show. log(a+2b)=21(loga+logb)+2log2
21 Power law, (loga+logb) Multiplication law, 2 log2 power law
log()=log()
log(a+2b)=log(ab)1/2+log22
log(a+2b)=log(4ab)
(a+2b)=4ab→(a+2b)2=16ab
a2+4b2+4ab=16ab⇒a2+4b2−12ab=0
Soln. 32<log105
32×1<log105
32log1010<log105
2log1010<3log105
log10102<log1053
log10100<log10125
m<n⇔logam<logan
log105<43
4log105<3log1010→log1054<log10103
log10625<log101000⇒625<1000
Show that
loga(14750)
=loga2+2loga5−loga3−2loga7
Soln. RHS =log2+2log5−log3−2log7
=log2+log52−log3−log72
=log(3×722×52)
=log(3×492×25)=log(14750)
Solve for x,log4(x−1)=log2(x−3)
Soln. 22=4,41/2=2
logab=logcalogcb
RHS =log2(x−3)=log41/2(x−3)
=log441/2log4(x−3) COB =1/2log44log4(x−3)=2log4(x−3)
log4(x−1)=log4(x−3)2
⇔(x−1)=(x−3)2
x−1=x2−6x+9
x2−7x+10=0
⇔(x−5)(x−2)=0
x=5,2 are the possible solutions
Case 1.x=2log(x−3)=log4(−1)
x=5log2(x−3)=log22=1
x=5