- **3. Change of base.**
- $\log _a m=\frac{\log _c m}{\log _c a}$,$\left(\log _{\underline{a}} m\right)\left(\log _c a\right)=\log _c m$
- $ \log _a m=x(\text { say }) $ ,$\underline{a}^x=m$ ,$ \quad \log _c a=y(\text { say })$,$ \quad c^y=a, .$
- $ \quad \log _c m=z(\text { say })$
- $ \quad c^z=m $
- $(c^y)^x = m = c^z$
- $c^{x y} =c^z$
- $\Rightarrow x y =z$,$ \quad\left(\log _a r=\log _a s \Leftrightarrow r=s\right)$
- $ \left(\log _a m\right)\left(\log _c a\right)=\log _c m $,$ \log _x a=\frac{\log _a a}{\log _a x}=\frac{1}{\log _a x}$
- $ \log _x a=\frac{1}{\log _a x}$
- $ a=1 \quad \log _x 1=\frac{1}{\log _1 x} \rightarrow \text { (Not defined) }$