logaa=1
(∵logaa=x⇒ax=a1⇒x=1)
log1/aa=−1
(∵log1/aa=x⇒(a1)x=a1⇒x=−1)
loga1=0
(∵logα1=x⇒ax=1=a0⇒x=0)
alogab=b
Assume a>0,a=1,m>0,n>0,c>0,c=1
1. Multiplication law
loga(mn)=logam+logan
logam=x( say )
ax=m,logan=y (say)
ay=n ,mn=axay ,mn=ax+y
Remark
loga(mnpq)=logam+logan+logap+logaq
loga(mnpq)=loga(mn)+loga(pq)
2. Quotient law
loga(nm)=logam−logan. ,logam=x( say )
ax=m,nm=ayax=ax−y
logan=y( say ),ay=n ,ayax=ax(ay1)=axa−y,=ax−y
nm=ax−y
loga(nm)=x−y
=logam−logan
loga(npqm)=logam−loga(npq)
=logam−logan−logap−logaq
loga(15×43)=loga33−loga15−loga4
3. Change of base.
logam=logcalogcm,(logam)(logca)=logcm
logam=x( say ) ,ax=m ,logca=y( say ),cy=a,.
logcm=z( say )
cz=m
(cy)x=m=cz
cxy=cz
⇒xy=z,(logar=logas⇔r=s)
(logam)(logca)=logcm,logxa=logaxlogaa=logax1
logxa=logax1
a=1logx1=log1x1→ (Not defined)
4. Power law
loga(mn)=nlogam.
logam=x( say )
ax=m…(∗)
loga(mn)=y( say )
ay=mn…(∗∗)
from equation (∗) and (∗∗)
ay=(ax)n=anx
∴y=nx
loga(mn)=nlogam
log24−log2(22)=2log22=2.[logaa=1]
1. Simplify
21log536+2log57−21log512
=log5(36)1/2+log572−log5(12)1/2(loga(mn)=nlogam)
=log5(236×49)=log5(493).
(Multiplication & Quotient law)
2. Evaluate
log5(625425)425=(25)1/4Power law
=log5((25)1/4)−log5625 (Quotient law )
=41log525−log5625
=41log5(52)−log5(54)
=42log55−4log55
=(42−4)log55(logaa=1)
=(42−4)
=4−14
=2−7
3. Evaluate.
log102+16log10(1516)+12log10(2425)+7log10(8081)
=log10(2×(1516)16×(2425)12×(8081)7)
=log10(316×516×312×(23)12×(24)7×572×(24)16×(52)12×(34)7)
=log10(328×523×2642×264×524×328)
=log10(2×5)=log1010=1 .