-
(2) If $u(x)=c f(x)$ for some $c \in \mathbb{R}$, & $f^{\prime}(a)$ exists, then $u^{\prime}(a)$ exists and $u^{\prime}(a)=c f^{\prime}(a)$.
-
Proof: For $h \neq 0, \frac{u(a+h)-u(a)}{h}=\frac{c f(a+h)-c f(a)}{h}$ $=c\left[\frac{f(a+h)-f(a)}{h}\right]$
-
$\rightarrow c f^{\prime}(a)$ as $h \rightarrow 0$.
-
$\therefore u^{\prime}(a)=c f^{\prime}(a) \text {. }$
-
(3) If $u(x)=c_1 f(x)+c_2 g(x)$ and $f^{\prime}(a), g^{\prime}(a)$ exists then
-
$u^{\prime}(a)=c_1 f^{\prime}(a)+c_2 g^{\prime}(a) $.
-
Proof: $u^{\prime}(a)=\frac{d}{d x}|_{x=a}(c_1 f(x))$
-
$+\frac{d}{d x}|_{x=a}(c_2 g(x))$
-
$=c_1 f^{\prime}(a)+c_2 g^{\prime}(a)$
-
(by the previous the results).