- We apply matrix & matrix inverse based techniques:
- Let the systems of equation be
- $ a_{11} x_1+a_{12} x_2+\cdots+a_{1 n} x_n=b_1$
- $ a_{21} x_1+a_{22} x_2+\cdots+a_{2 n} x_n=b_2 $
.
.
.
- $a_{n 1} x_1+a_{n 2} x_2+\cdots+a_{n n} x_n=b_1$
- We are looking at $x$ equation in $n$ unknowns, $x_1 \cdots x_n \text {. }$