Determinants L-11
Determinant lecture 11
→ \rightarrow → → \rightarrow → Determinant lecture 11 → \rightarrow → System of linear equations → \rightarrow → System of linear equations
Determinants L-11
System of linear equations
→ \rightarrow → Determinant lecture 11 → \rightarrow → System of linear equations → \rightarrow → System of linear equations → \rightarrow → Example 1
Determinants L-11
System of linear equations
Systems of linear equations we consider multiple equation with multiple variable, and we like to solve for the variables such that the obtained values satisfy all the equations simultaneously.
Determinant lecture 11 → \rightarrow → System of linear equations → \rightarrow → System of linear equations → \rightarrow → Example 1 → \rightarrow → Example 1
Determinants L-11
Example 1
System of linear equations → \rightarrow → System of linear equations → \rightarrow → Example 1 → \rightarrow → Example 1 → \rightarrow → Example 1
Determinants L-11
Example 1
System of linear equations → \rightarrow → Example 1 → \rightarrow → Example 1 → \rightarrow → Example 1 → \rightarrow → Systems of equation
Determinants L-11
Example 1
∴ 2 x + 3 y = − 10 + 15 = 5 \therefore 2 x+3 y=-10+15=5 ∴ 2 x + 3 y = − 10 + 15 = 5
4 ⋅ ( − 5 ) + 3 ( 5 ) = − 20 + 30 = 10 \cdot(-5)+3(5)=-20+30=10 ⋅ ( − 5 ) + 3 ( 5 ) = − 20 + 30 = 10
x = 2 , y = 1 3 x=2, y=\frac{1}{3} x = 2 , y = 3 1
∴ 2 x + 3 y = 4 + 1 = 5 \therefore 2 x+3 y= 4+1=5 ∴ 2 x + 3 y = 4 + 1 = 5
4 ⋅ 2 + 6 ⋅ 1 3 = 8 + 2 = 10 4 \cdot 2+6 \cdot \frac{1}{3}=8+2=10 4 ⋅ 2 + 6 ⋅ 3 1 = 8 + 2 = 10
Example 1 → \rightarrow → Example 1 → \rightarrow → Example 1 → \rightarrow → Systems of equation → \rightarrow → AX = B
Determinants L-11
Systems of equation
We apply matrix & matrix inverse based techniques:
Let the systems of equation be
a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a_{11} x_1+a_{12} x_2+\cdots+a_{1 n} x_n=b_1 a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1
a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 a_{21} x_1+a_{22} x_2+\cdots+a_{2 n} x_n=b_2 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2
.
.
.
a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b 1 a_{n 1} x_1+a_{n 2} x_2+\cdots+a_{n n} x_n=b_1 a n 1 x 1 + a n 2 x 2 + ⋯ + a nn x n = b 1
We are looking at x x x equation in n n n unknowns, x 1 ⋯ x n . x_1 \cdots x_n \text {. } x 1 ⋯ x n .
Example 1 → \rightarrow → Example 1 → \rightarrow → Systems of equation → \rightarrow → AX = B → \rightarrow → AX = B
Determinants L-11
AX = B
o r [ a 11 ⋯ a 1 n a 21 ⋯ a 2 n ⋮ a n 1 ⋯ a n n ] ⋅ [ x 1 ⋮ x n ] = [ b 1 b 2 ⋮ b n ] or \left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ a_{21} & \cdots & a_{2 n} \\ \vdots & & \\ a_{n 1} & \cdots & a_{n n}\end{array}\right] \cdot\left[\begin{array}{c}x_1 \\ \vdots \ x_n\end{array}\right]=\left[\begin{array}{c}b_1 \\ b_2 \ \vdots \\ b_n\end{array}\right] or a 11 a 21 ⋮ a n 1 ⋯ ⋯ ⋯ a 1 n a 2 n a nn ⋅ [ x 1 ⋮ x n ] = b 1 b 2 ⋮ b n
Example 1 → \rightarrow → Systems of equation → \rightarrow → AX = B → \rightarrow → AX = B → \rightarrow → Example 2
Determinants L-11
AX = B
Case.1 suppose A A A is non singnlar.
We know we can compute
A − 1 A^{-1} A − 1
∴ \therefore ∴ A − 1 ( A x ) = A − 1 B A^{-1}(A x)=A^{-1} B A − 1 ( A x ) = A − 1 B
or x = A − 1 B \text { or } x=A^{-1} B or x = A − 1 B
Systems of equation → \rightarrow → AX = B → \rightarrow → AX = B → \rightarrow → Example 2 → \rightarrow → Example 2
Determinants L-11
Example 2
consider 2 x+3 y=8
3 x-y = 1
[ 2 3 3 − 1 ] [ x y ] = [ 8 1 ] \left[\begin{array}{cc}2 & 3 \\ 3 & -1\end{array}\right]\left[\begin{array}{l}x \\ y
\end{array}\right]=\left[\begin{array}{l}8 \\ 1\end{array}\right] [ 2 3 3 − 1 ] [ x y ] = [ 8 1 ]
N o w ∣ A ∣ = ∣ 2 3 3 − 1 ∣ = − 2 − 9 = − 11 ≠ 0 Now |A|=\left|\begin{array}{cc}2 & 3 \\ 3 & -1\end{array}\right|=-2-9=-11\neq 0 N o w ∣ A ∣ = 2 3 3 − 1 = − 2 − 9 = − 11 = 0
∴ A − 1 e x i s t s . \therefore A^{-1} exists. ∴ A − 1 e x i s t s .
AX = B → \rightarrow → AX = B → \rightarrow → Example 2 → \rightarrow → Example 2 → \rightarrow → Example 3
Determinants L-11
Example 2
A − 1 = ( a d j A ) ∣ A ∣ A^{-1}=\frac{(a d j A)}{|A|} A − 1 = ∣ A ∣ ( a d j A )
$ Now \left[\begin{array}{cc}2 & 3 \ 3 & -1\end{array}\right] \quad \therefore(\operatorname{adj} A)=\left[\begin{array}{ll}-1 & -3 \\ -3 & 2\end{array}\right].$
∴ A − 1 = [ − 1 − 3 − 3 2 ] − 11 = ( 1 / 11 3 / 11 3 / 11 − 2 / 11 ) . \therefore A^{-1}=\frac{\left[\begin{array}{cc}-1 & -3 \\ -3 & 2\end{array}\right]}{-11}=\left(\begin{array}{cc}1 / 11 & 3 / 11 \\ 3 / 11 & -2 / 11\end{array}\right) . ∴ A − 1 = − 11 [ − 1 − 3 − 3 2 ] = ( 1/11 3/11 3/11 − 2/11 ) .
∴ A − 1 B = ( 1 / 11 3 / 11 3 / 11 − 2 / 11 ) ( 8 1 ) \therefore A^{-1} B=\left(\begin{array}{cc}1 / 11 & 3 / 11 \\ 3 / 11 & -2 / 11\end{array}\right)\left(\begin{array}{l}8 \\ 1\end{array}\right) ∴ A − 1 B = ( 1/11 3/11 3/11 − 2/11 ) ( 8 1 )
= ( 8 11 + 3 11 24 11 − 2 11 ) = ( 1 2 ) . =\left(\begin{array}{l}\frac{8}{11}+\frac{3}{11} \\ \frac{24}{11}-\frac{2}{11}\end{array}\right)=\left(\begin{array}{l}1 \\ 2\end{array}\right) \text {. } = ( 11 8 + 11 3 11 24 − 11 2 ) = ( 1 2 ) .
AX = B → \rightarrow → Example 2 → \rightarrow → Example 2 → \rightarrow → Example 3 → \rightarrow → Example 3
Determinants L-11
Example 3
Ex: The cost of 4kg of onion 3kg of wheat & 2kg of rice in Rs. 60 .
The cost of 2kg of onion , 4kg of wheat & 6 kg of rice in Rs 90.
The cost of 6kg of onion 2kg of wheat & 3kg of rice in Rs 70.
Find the individual cost.
Example 2 → \rightarrow → Example 2 → \rightarrow → Example 3 → \rightarrow → Example 3 → \rightarrow → Example 3
Determinants L-11
Example 3
We represent the system of equation as:
[ 4 3 2 2 n 6 6 2 3 ] [ x y z ] = [ 60 90 70 ] \left[\begin{array}{lll}4 & 3 & 2 \\ 2 & n & 6 \\ 6 & 2 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \end{array}\right]=\left[\begin{array}{l}60 \\ 90 \\ 70\end{array}\right] 4 2 6 3 n 2 2 6 3 x y z = 60 90 70
Example 2 → \rightarrow → Example 3 → \rightarrow → Example 3 → \rightarrow → Example 3 → \rightarrow → Example 3
Determinants L-11
Example 3
∴ \therefore ∴ We need to compute A − 1 = ( adj A ) ∣ A ∣ A^{-1}=\frac{(\operatorname{adj} A)}{|A|} A − 1 = ∣ A ∣ ( adj A ) we compute (adj A A A ).
A 11 = 4.3 − 6.2 = 0
A_{11}=4.3-6.2=0 A 11 = 4.3 − 6.2 = 0
A 12 = ( − 1 ) ( 2.3 − 6.6 ) = 30 A_{12}=(-1)(2.3-6.6)=30 A 12 = ( − 1 ) ( 2.3 − 6.6 ) = 30
A 13 = 2.2 − 6.4 = − 20 A_{13}=2.2-6.4=-20 A 13 = 2.2 − 6.4 = − 20
A 21 = ( − 1 ) ( 3.3 − 2.2 ) = − 5 A_{21}=(-1)(3.3-2.2)=-5 A 21 = ( − 1 ) ( 3.3 − 2.2 ) = − 5
A 22 = 4.3 − 6.2 = 0 A_{22}=4.3-6.2=0 A 22 = 4.3 − 6.2 = 0
A 23 = ( − 1 ) ( 4.2 − 6.3 ) = 10 A_{23}=(-1)(4.2-6.3)=10 A 23 = ( − 1 ) ( 4.2 − 6.3 ) = 10
A 31 = 3.6 − 4.2 = 10 A_{31}=3.6-4.2=10 A 31 = 3.6 − 4.2 = 10
A 32 = ( − 1 ) ( 4.6 − 2.2 ) = − 20 A_{32}=(-1)(4.6-2.2)=-20 A 32 = ( − 1 ) ( 4.6 − 2.2 ) = − 20
A 33 = 4.4 − 3.2 = + 10 A_{33}=4.4-3.2=+10 A 33 = 4.4 − 3.2 = + 10
Example 3 → \rightarrow → Example 3 → \rightarrow → Example 3 → \rightarrow → Example 3 → \rightarrow → Example 3
Determinants L-11
Example 3
( adj A ) = ( 0 − 5 10 30 0 − 20 − 20 10 10 ) (\operatorname{adj} A)=\left(\begin{array}{ccc}0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10\end{array}\right) ( adj A ) = 0 30 − 20 − 5 0 10 10 − 20 10
∴ \therefore ∴ To compute A − 1 A^{-1} A − 1 we need to |A|
Example 3 → \rightarrow → Example 3 → \rightarrow → Example 3 → \rightarrow → Example 3 → \rightarrow → Example 3
Determinants L-11
Example 3
∣ A ∣ = 4.0 + 3.30 + 2 ( − 20 ) |A|=4.0+3.30+2(-20) ∣ A ∣ = 4.0 + 3.30 + 2 ( − 20 )
= 0 + 90 − 40 = 50 =0+90-40=50 = 0 + 90 − 40 = 50
∴ A − 1 = ( 0 − 5 10 30 0 − 20 − 20 10 10 ) 50 \therefore A^{-1}=\frac{\left(\begin{array}{ccc}0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10\end{array}\right)}{50} ∴ A − 1 = 50 ( 0 30 − 20 − 5 0 10 10 − 20 10 )
= ( 0 − 1 10 1 5 3 / 5 0 − 2 / 5 − 2 / 5 1 5 1 / 5 ) ⋅ [ 60 90 70 ] =\left(\begin{array}{ccc}0 & -\frac{1}{10} & \frac{1}{5} \\ 3 / 5 & 0 & -2 / 5 \\ -2 / 5 & \frac{1}{5} & 1 / 5\end{array}\right) \cdot\left[\begin{array}{l}60 \\ 90 \\ 70\end{array}\right] = 0 3/5 − 2/5 − 10 1 0 5 1 5 1 − 2/5 1/5 ⋅ 60 90 70
∴ ( x y 3 ) = ( 5 8 8 ) \therefore\left(\begin{array}{l}x \\ y \\ 3\end{array}\right)=\left(\begin{array}{l}\ 5 \\ 8 \\ 8\end{array}\right) ∴ x y 3 = 5 8 8
Example 3 → \rightarrow → Example 3 → \rightarrow → Example 3 → \rightarrow → Example 3 → \rightarrow → Example 4
Determinants L-11
Example 3
Example 3 → \rightarrow → Example 3 → \rightarrow → Example 3 → \rightarrow → Example 4 → \rightarrow → Example 4
Determinants L-11
Example 4
The sum of 3 numbers is 6
If we multiply the 3 rd 3^{\text {rd }} 3 rd number & add to the first then we get 7 & if we add the 2 nd 2^{\text {nd }} 2 nd and 3 rd 3^{\text {rd }} 3 rd number & add that to 3 times the first number then we get 12.
Find the three numbers.
Example 3 → \rightarrow → Example 3 → \rightarrow → Example 4 → \rightarrow → Example 4 → \rightarrow → Example 4
Determinants L-11
Example 4
Three equations :
x + y + z = 6
x + y + 2 z = 7
3 x + y + z = 12
or [ 1 1 1 1 0 2 3 1 1 ] [ x y z ] = [ 6 7 12 ] \text { or }\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \end{array}\right]=\left[\begin{array}{l}6 \\ 7 \\ 12\end{array}\right] or 1 1 3 1 0 1 1 2 1 x y z = 6 7 12
Determinant of A A A
= 1 ⋅ ( 0 − 2 ) − 1 ⋅ ( 1 − 6 ) + 1 ( 1 − 0 ) =1 \cdot(0-2)-1 \cdot(1-6)+1(1-0) = 1 ⋅ ( 0 − 2 ) − 1 ⋅ ( 1 − 6 ) + 1 ( 1 − 0 )
= − 2 + 5 + 1 = 4 ≠ 0 =-2+5+1=4 \neq 0 = − 2 + 5 + 1 = 4 = 0
Example 3 → \rightarrow → Example 4 → \rightarrow → Example 4 → \rightarrow → Example 4 → \rightarrow → Example 4
Determinants L-11
Example 4
∴ \therefore ∴ We can compute A − 1 A^{-1} A − 1
= ( adj A ) ∣ A ∣ =\frac{(\operatorname{adj} A)}{|A|} = ∣ A ∣ ( adj A )
Therefore as before we compute the cofactor.
A 11 = − 2 A 12 = 5 A 13 = 1 A 21 = 0 A 22 = − 2 A 23 = 2 A 31 = 2 A 32 = − 1 A 33 = − 1 \begin{array}{lll}A_{11}=-2 & A_{12}=5 & A_{13}=1 \\ A_{21}=0 & A_{22}=-2 & A_{23}=2 \\ A_{31}=2 & A_{32}=-1 & A_{33}=-1\end{array} A 11 = − 2 A 21 = 0 A 31 = 2 A 12 = 5 A 22 = − 2 A 32 = − 1 A 13 = 1 A 23 = 2 A 33 = − 1
Example 4 → \rightarrow → Example 4 → \rightarrow → Example 4 → \rightarrow → Example 4 → \rightarrow → Cramer rule
Determinants L-11
Example 4
∴ ( adj A ) = ( − 2 0 2 5 − 2 − 1 1 2 − 1 ) \therefore(\operatorname{adj} A)=\left(\begin{array}{ccc}-2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1\end{array}\right) ∴ ( adj A ) = − 2 5 1 0 − 2 2 2 − 1 − 1
∴ A − 1 = 1 4 ( − 2 0 2 5 − 2 − 1 1 2 − 1 ) \therefore A^{-1}=\frac{1}{4}\left(\begin{array}{ccc}-2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1\end{array}\right) ∴ A − 1 = 4 1 − 2 5 1 0 − 2 2 2 − 1 − 1 .
∴ \therefore ∴ Solution of the equation
= A − 1 B = 1 4 ( − 2 0 2 5 − 2 − 1 1 2 − 1 ) ( 6 7 12 ) =A^{-1} B=\frac{1}{4}\left(\begin{array}{ccc}-2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1\end{array}\right)\left(\begin{array}{l}6 \\ 7 \\ 12 \end{array}\right) = A − 1 B = 4 1 − 2 5 1 0 − 2 2 2 − 1 − 1 6 7 12
= 1 4 ( − 12 + 24 30 − 14 − 12 6 + 14 − 12 ) = 1 4 ( 12 4 8 ) = ( 3 1 2 ) = \frac{1}{4}\left(\begin{array}{cc}-12+24 \\ 30-14 & -12 \\ 6+14 & -12\end{array}\right)=\frac{1}{4}\left(\begin{array}{c}12 \\ 4 \\ 8 \end{array}\right)=\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right) = 4 1 − 12 + 24 30 − 14 6 + 14 − 12 − 12 = 4 1 12 4 8 = 3 1 2
Example 4 → \rightarrow → Example 4 → \rightarrow → Example 4 → \rightarrow → Cramer rule → \rightarrow → Cramer Rule
Determinants L-11
Cramer rule
If the given system of equation are A n × n X n × 1 = B n × 1 \underset{\tiny n \times n}{A} \underset{~ ~ \tiny n \times 1}{X}=\underset{\tiny n \times 1}{B} n × n A n × 1 X = n × 1 B
such that A A A in non-Singular
B ≠ 0 n × 1 B \neq 0_{n \times 1} B = 0 n × 1 (ie a n × 1 n \times 1 n × 1 matrix where all values are 0 ) then the solution of the equation can be compute as follow.
Example 4 → \rightarrow → Example 4 → \rightarrow → Cramer rule → \rightarrow → Cramer Rule → \rightarrow → Cramer Rule
Determinants L-11
Cramer Rule
Let D 1 D_1 D 1 be the matrix obtained by replacing the first column of A A A with B B B vector
i.e D 1 = ∣ b 1 a 12 a 13 b 2 a 22 a 23 b 3 a 32 a 33 ∣ \text { i.e } D_1=\left|\begin{array}{lll}b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33}\end{array}\right| i.e D 1 = b 1 b 2 b 3 a 12 a 22 a 32 a 13 a 23 a 33
Example 4 → \rightarrow → Cramer rule → \rightarrow → Cramer Rule → \rightarrow → Cramer Rule → \rightarrow → Cramer Rule
Determinants L-11
Cramer Rule
similarly Let D 2 D_2 D 2 be determinant of $\left|\begin{array}{lll}a_{11} & b_1 & a_{13} \ a_{21} & b_2 & a_{23} \ a_{31} & b_3 & a_{33}\end{array}\right|$
similarly campute D 3 D_3 D 3 as determinant
of
∣ a 11 a 12 b 1 a 21 a 22 b 2 a 31 a 32 b 3 ∣ \left|\begin{array}{lll}a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3\end{array}\right| a 11 a 21 a 31 a 12 a 22 a 32 b 1 b 2 b 3
Cramer rule → \rightarrow → Cramer Rule → \rightarrow → Cramer Rule → \rightarrow → Cramer Rule → \rightarrow → Solution by Cramer'Rule
Determinants L-11
Cramer Rule
Then x = D 1 D y = D 2 D & z = D 3 D x=\frac{D_1}{D} \quad y=\frac{D_2}{D} \quad \& z=\frac{D_3}{D} x = D D 1 y = D D 2 & z = D D 3
A=[ 1 1 1 1 0 2 3 1 1 ] [ x y z ] = [ 6 7 12 ] \left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}6 \\ 7 \\ 12\end{array}\right] 1 1 3 1 0 1 1 2 1 x y z = 6 7 12
( 3 1 2 ) \left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right) 3 1 2
Cramer Rule → \rightarrow → Cramer Rule → \rightarrow → Cramer Rule → \rightarrow → Solution by Cramer'Rule → \rightarrow → Solution by Cramer'Rule
Determinants L-11
Solution by Cramer'Rule
= 6 ( 0 − 2 ) − 1 ( 7 − 24 ) + 1 ( 7 ) =6(0-2)-1(7-24)+1(7)
= 6 ( 0 − 2 ) − 1 ( 7 − 24 ) + 1 ( 7 )
= − 12 − 7 + 24 + 7 = 12 =-12-7+24+7
=12 = − 12 − 7 + 24 + 7 = 12 .
∴ \therefore ∴ The value of the first variable = 12 4 = 3 =\frac{12}{4}=3 = 4 12 = 3 .
Cramer Rule → \rightarrow → Cramer Rule → \rightarrow → Solution by Cramer'Rule → \rightarrow → Solution by Cramer'Rule → \rightarrow → Solution by Cramer'Rule
Determinants L-11
Solution by Cramer'Rule
Now D 2 = ∣ 1 6 1 1 7 2 3 12 1 ∣ D_2= \left|\begin{array}{ccc}1 & 6 & 1 \\ 1 & 7 & 2 \\ 3 & 12 & 1\end{array}\right| D 2 = 1 1 3 6 7 12 1 2 1
∴ D 2 = 1 ( 7 − 24 ) − 6 ( 1 − 6 ) \therefore D_2 =1(7-24)-6(1-6) ∴ D 2 = 1 ( 7 − 24 ) − 6 ( 1 − 6 )
= − 17 + 30 − 9 ( 12 − 21 ) = 4 =-17+30-9(12-21) =4 = − 17 + 30 − 9 ( 12 − 21 ) = 4
∴ \therefore ∴ value of y = 4 4 = 1 y=\frac{4}{4}=1 y = 4 4 = 1
Cramer Rule → \rightarrow → Solution by Cramer'Rule → \rightarrow → Solution by Cramer'Rule → \rightarrow → Solution by Cramer'Rule → \rightarrow → If A A A is singular
Determinants L-11
Solution by Cramer'Rule
= 1 ( 0 − 7 ) − 1 ( 12 − 21 ) =1(0-7)-1(12-21)
= 1 ( 0 − 7 ) − 1 ( 12 − 21 )
= − 7 + 9 + 6 = 8 =-7+9+6=8
= − 7 + 9 + 6 = 8
∴ z = 8 4 = 2. \therefore z=\frac{8}{4}=2 . ∴ z = 4 8 = 2.
Solution by Cramer'Rule → \rightarrow → Solution by Cramer'Rule → \rightarrow → Solution by Cramer'Rule → \rightarrow → If A A A is singular → \rightarrow → Example 5
Determinants L-11
If A A A is singular
If A A A is singular then what happen. |A|=0
∴ \therefore ∴ We need to do the following
a) If |A| = 0 & (adj A) B = 0 then we will have multiple solution, for system of equation.
b) If |A| = 0 & (adj A) B ≠ 0 \neq 0 = 0 then there will be no solution.
Solution by Cramer'Rule → \rightarrow → Solution by Cramer'Rule → \rightarrow → If A A A is singular → \rightarrow → Example 5 → \rightarrow → Example 6
Determinants L-11
Example 5
∴ \therefore ∴ We compute ( ( ( adj A A A ) B
= ( 6 − 3 − 4 2 ) ( 5 10 ) = \left(\begin{array}{cc}6 & -3 \\ -4 & 2\end{array}\right)\left(\begin{array}{c}5 \\ 10\end{array}\right) = ( 6 − 4 − 3 2 ) ( 5 10 )
= ( 30 − 30 − 20 + 20 ) = ( 0 0 ) = 0 = \left(\begin{array}{c}30-30 \\ -20+20\end{array}\right)=\left(\begin{array}{l}0 \\ 0\end{array}\right)=0 = ( 30 − 30 − 20 + 20 ) = ( 0 0 ) = 0
There are infinitely many solution.
Solution by Cramer'Rule → \rightarrow → If A A A is singular → \rightarrow → Example 5 → \rightarrow → Example 6 → \rightarrow → Thank you
Determinants L-11
Example 6
2 x+3 y=5
4 x+6 y=15
∴ ∣ A ∣ = 0 \therefore|A|=0 ∴ ∣ A ∣ = 0
(adj A)( 5 15 ) = ( 6 − 3 − 4 2 ) ( 5 15 ) \left(\begin{array}{c}5 \\ 15\end{array}\right)=\left(\begin{array}{cc}6 & -3 \\ -4 & 2\end{array}\right)\left(\begin{array}{c}5 \\ 15 \end{array}\right) ( 5 15 ) = ( 6 − 4 − 3 2 ) ( 5 15 )
= 30 − 45 = 30 - 45 = 30 − 45
− 20 + 30 = ( − 15 10 ) -20 + 30 =\left(\begin{array}{c}-15 \\ 10\end{array}\right) − 20 + 30 = ( − 15 10 )
Not a zero matrix of size 2 × 1 2 \times 1 2 × 1
If A A A is singular → \rightarrow → Example 5 → \rightarrow → Example 6 → \rightarrow → Thank you → \rightarrow →
Determinants L-11
Thank you
Example 5 → \rightarrow → Example 6 → \rightarrow → Thank you → \rightarrow → → \rightarrow →
Resume presentation
Determinants L-11 Determinant lecture 11 $\rightarrow$ $\rightarrow$ Determinant lecture 11 $\rightarrow$ System of linear equations $\rightarrow$ System of linear equations