What is the determinant of
A=aawaω2a2a2ωa2ω2a3−1a3ω−1a3ωz−1
What ω is the cube root of unity
Soln. And we known that
1+ω+ω2=0
∴∣A∣
=aaωaω2a2a2ωa2ω2a3a3ωa3ω2−aaωaω2a2a2ωa2ω2111
∣A1∣=a⋅aω⋅aω2111aaωaω2a2a2ωa2ω2
=a1+ω+ω2=0111aaωaω2a2a2ωa2ω2
∴∣A1∣=111aaωaω2a2a2ωa2ω2
Now ∣A2∣=aaωaω2a2a2ωa2ω2111
We can get ∣A2∣ from ∣A1∣ by first interchanging column with column , then interchanging column 1 and column 2
∴ we get ∣A2∣ from ∣A1∣ by two interchanges,
∣A2∣=(−1)2∣A1∣
or ∣A∣=∣A1∣−∣A2∣
= 0
Any matrix whose determinant in 0 is called a singular matrix
A matrix with non zero determinant is called a non singular matrix.
If A is a non singular matrix we can find another non singular matrix B of the same order of A,
such that, A. B = B.A = I
where A and B are non matrix
Question: How to obtain A−1 given a n × n matrix A.
We shall compute A−1 with the help of ∣A∣ and ( adj A)
We know that A(adjA)=∣A∣In
∴A∣A∣(adiA)=In
∴ We obtain a matrix ∣A∣(adiA)∃∣A∣(adjA)=I.
and parrallely ∣A∣(adjA)⋅A=In.
Now question is can there be two inverses of a Matrix?
Ans: NO.
If possible, let B and C be two inverses of A.
∴(A⋅B)=(B⋅A)=I.
and (A⋅C)=(C⋅A)=I.
∴C=I⋅C=(B⋅A)⋅C
=B⋅(A⋅C)=B⋅I=B
Result: what is the inverse of A.B. ?
We know that (A⋅B)(B−1⋅A−1)
=A(B⋅B−1)⋅A−1=AIA−1
=AA−1=I
∴ We can say by unique number of inverse that (AB)−1=B−1A−1
Result: If A&B are non singular matrix then (adj AB )
=(adjB)(adjA).
Proof consider (AB)(adjB)(adjA)
=A(B(adjB))(adjA)
=A(∣B∣I)(adjA)
=∣B∣(A⋅I⋅(adjA))
=∣B∣(A⋅(adjA∣)=∣B∣∣A∣I
Since (adj AB ) in such that
(AB)( adj AB)=∣AB∣I
=∣A∣∣B∣I
∴ We find that
(AB)(adjAB)=(AB)(adjB)(adjA)
=∣A∣∣B∣I.
∴ By Multiplying both sides with (AB)−1
we get (adjAB) = (adjB)(adjA)
A=103−12−22−34
∴A11=4.2−(−3)(−2)−8−6=2A12=(−1)1+2(0.4−(−3).3)=−9
A13=0.(−2)−3.2=−6
A21=−4−2(−2)=0
A22=4.1−3.2=−2
A23=(−1)2+3(1⋅(−2)−(−1)(3))=−(−2+3)=−1
A31=−1, A32=3 and A33=2
∴(adjA)=2−9−60−2−1−132∴A−1=−2960211−3−2
Q: What is the determinant of A−1
we know that A⋅A−1=I
Soln. ∴A⋅A−1=∣I∣=1 ∴∣A∣A−1=1 or A−1=∣A∣1
Ex what is the inverse of
A=1000cosαsinα0sinα−cosα
so we first compute the cofactor A.
A11=cosα(−cosα)−sinα⋅sinα
=−cos2α−sin2α=0⋅1
A12=0⋅(−cosα)−0(sinα)=0
A13=0⋅sinα−0cosα=0
A21=0(−cosα)−0(sinα)=0
A22=−cosα−0=−cosα
In a similar way:
A23=(−1)2+3(1⋅sinα−0)=
−sinα
A31=0⋅sinα−0sinα=0
A32=(−1)(1⋅sinα−0)=−sinα
A33=1−cosα−0
=cosα.
∴(adjA) =−1000−cosα−sinα0−sinαcosα
∴A (adj A)
=1000cosαsinα0sinα−cosα−1000−cosλ−sinα0−sinαcosα
=−1000−cos2α−sin2α−cosα⋅sinα+cosα⋅sinα0−cosα⋅sinα+cosα⋅sinα−sin2α−cos2α
∴A(adjA)=−1000−1000−1 i.e (−1)I3=∣A∣I3.
∴ The inverse of A is
∣A∣(adjA)=−1000−cosα−sinα0−sinαcosα
=1000cosαsinα0sinα−cosα−1&
Ex : Show that the matrix A=122212221 satisfies the equation A2−4A−5I3=C where O in the 0 -mamix of orden 3×3.
Also, find out the inverse 8 the above matrix.
since
A=122212221
A2=A⋅A=122212221122212221=988898889
∴A2−4A=5I
Pre-multiplying by A−1
A−1(A2−4A)=5⋅A−1⋅I or A−4I=5⋅A−1
∴A−1⋅5A−4⋅I
=51122212221−400040004
=51−3222−3222−3
=−3/52/52/52/5−3/52/52/52/5−3/5
Verify that A⋅A−1=A−1A =I.
What is determinant if (adj (adjA))
when ∣A∣ is given
Soln. we know ∣A(adjA)∣
=∣A∣∣(adjA)∣=∣∣A∣In∣&=∣A∣∣A∣0∣A∣n×n&
=∣A∣n
∴∣A∣∣(adiA)∣=∣A∣n
∴∣adjA)∣=∣A∣n−1
∴∣adj(adjA)∣=(∣A∣n−1)n−1