-
Show that $\begin{aligned} \quad & A=(a, b+c) \\ & B=(b, c+a) \\ & C=(c, a+b)\end{aligned} \quad $ are Collinear
-
$ \therefore$ We compare with the determinant?
-
$\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|$
-
$c_3=c_3+c_2$
-
$= $ $\left|\begin{array}{lll}1 & a & a+b+c \\ 1 & b & a+b+c \\ 1 & c & a+b+c\end{array}\right|$
-
$ = (a+b+c)$ $\left(\begin{array}{lll}1 & a & 1 \\ 1 & b & 1 \\ 1 & c & 1\end{array}\right)$
-
$ = 0 $