Determinants L-8
Determinants
lecture - 8
Determinants L-8
Problem 1
Find the determinant of
A=1x2xx1x2x2x1
Soln. R1←R1+R2
∴∣A∣=1+x2x2xx+11x2x2+xx1
R1←R1+R3
Then ∣A∣=1+x+x2x2x1+x+x21x21+x+1x2x1
Determinants L-8
Solution
-
∴∣A∣=(1+x+x2)1x2x11x21x1
-
Now C1←C1−C2
-
∴∣A∣=(1+x+x2)0x2−1x−x211x21x1
-
C2←C2−C3
-
∴∣A∣=(1+x+x2)0x2−1x(1−x)01−xx2−11x1
Determinants L-8
Solution
-
∴∣A∣=(1+x+x2)0x2−1x(1−x)01−xx2−11x1
-
=(1+x+x2)((x2−1)2−x(1−x)2)
-
=(1+x+x2)(x−1)2((x+1)2−x)
-
=(1+x+x2)(x−1)2(x2+x+1)
-
=(x−1)(x2+x+1)(x−1)(x2+x+1)
-
=(1−x3)2
Determinants L-8
Problem 2
Find the determinant of
A=11+315+223+5520251551025
Soln. ∣A∣=11225520251551025+3153⋅320251551025
=∣A1∣+∣A2∣
Determinants L-8
Solution
-
∣A1∣=11⋅5⋅5125253125
-
Since two columns are identical the determinant =0
-
∴∣A1∣=0
-
∴∣A∣=∣A2∣=3153⋅320251551025
Determinants L-8
Solution
-
∴∣A∣=3⋅5⋅5153253125
-
Its determinants
-
=1⋅(5−6)−2(5−6)
-
+1(15−15)
-
=−1(5−6)=(6−5)
-
∴∣A∣=53×(6−5)
Determinants L-8
Problem 3
-
Find the determinant of
-
A=a−b−c2b2c2ab−c−a2c2a2bc−a−b
-
Soln. R1←R1+R2+R3
-
∣A∣=a+b+c2b2cb+c+ab−c−a2ca+b+c2bc−a−b
Determinants L-8
Solution
-
∴∣A∣=(a+b+c)12b2c1b−c−a2c12bc−a−b
-
∣A∣=(a+b+c)00a+b+c1b−c−a2c12bc−a−b
-
∴∣A∣=(a+b+c)(−1)3+1(a+b+c)(2b−(b−c−a))
-
=(a+b+c)3Ans
Determinants L-8
Problem 4
-
A=xyzx2y2z2yzzxxy
-
Soln. R1=R1−R2
-
∣A∣=x−yyz(x−y)(x+y)y2z2z(y−x)zxxy
Determinants L-8
Solution
-
∴∣A∣=(x−y)⋅1yzx+yy2z2−zzxxy
-
R2←R2−R3
-
∣A∣=(x−y)1y−zzx+y(y−z)(y+z)z2−zx(z−y)xy
-
∴∣A∣=(x−y)(y−z)11zx+yy+zz2−z−xxy
Determinants L-8
Solution
-
∴R2=R2−R1 We have
-
∴∣A∣=(x−y)(y−z)10zx+yz−xz2−zz−xxy
-
=(x−y)(y−z)(z−x)=(x−y)(y−z)(z−x)∣B∣10zx+y1z2−z1xy
Determinants L-8
Solution
-
∣B∣=1⋅(xy−z2)+z(x+y−(−z))
-
=(xy−z2)+(x+y+z)z
-
=xy−z2+xz+yz+z2
-
=xy+yz+zx
-
∴∣A∣=(x−y)(y−z)(z−x)(xy+yz+zx)
Determinants L-8
Problem 5
-
A⋅a2+1abcaabb2+1cbacbcc2+1
-
Soln. ∴∣A∣=abc1a(a2+1)ab2c2aa2bb(b2+1)c2ba2cb2cc(c2+1)
-
∴∣A∣=abcabca2+1b2c2a2b2+1c2a2b2c2+1
Determinants L-8
Solution
-
∴∣A∣=a2+1b2c2a2b2+1c2a2b2c2+1
-
∴R1←R2+R3+R1
-
∣A∣=a2+b2+c2+1b2c2a2+b2+c2+1b2+1c2a2+b2+1b2c2+1
Determinants L-8
Solution
-
∣A∣=(a2+b2+c2+1)1b2c21b2+1c21b2c2+1
-
C1←C1−C3
-
C2←C2−C3
-
∣A∣=(a2+b2+c2+1)00−101−11b2c2+1
-
∴∣A∣=(1+a2+b2+c2)
Determinants L-8
Problem 6
-
Find the determinant of
-
A=nn+1n+2npnn+1Pn+1n+2Pn+2nCnn+1Cn+1n+2Cn+2
-
Soln. ∴A=nn+1n+2n!(n+1)!(n+2)!111
Determinants L-8
Solution
-
∣A∣=n!nn+1n+21(n+1)(n+1)(n+2)111
-
R3=R3−R2
-
∣A∣=n!nn+111n+1(n+1)2110
-
R2=R2−R1
-
∣A∣=n!n111n(n+1)2100
Determinants L-8
Solution
-
∴∣A∣=n!(−1)1+3((n+1)2−n)
-
=n!(n2+n+1)
-
Verification: n=2
-
A=2342!3!4!111
-
∴∣A∣=2342624111
Determinants L-8
Solution
-
∣A∣=2312618110
-
R3=R3−R2
-
=2112418100
-
R2=R2−R1
-
=∣A∣=1⋅(18−4)=14
-
We got for general n
-
∣A∣=n!(n2+n+1).
Determinants L-8
Solution
-
Putting x=2
-
We have n!(n2+n+1)
-
=2!(22+2+1)
-
=2(4+2+1)
-
=2⋅7=14
Determinants L-8
Thank you
Determinants L-8 Determinants lecture - 8 $\rightarrow$ $\rightarrow$ Determinants lecture - 8 $\rightarrow$ Problem 1 $\rightarrow$ Solution