If A=a11a21a31a12a22a32a13a23a33
Then if B=ka11a21a31ka12a22a32ka13a23a33
Then ∣B∣=k∣A∣
Question: What if all the elements of A are multiplied with k. How does it affect the determinant?
Soln. B=ka11ka21ka31ka12ka22ka32ka13ka23ka33
=ka11(ka22⋅ka33−ka23⋅ka32)
−ka12(ka21⋅ka33−ka31⋅ka23)
+ka13(ka21.ka32 −ka22⋅ka31)
=k3(∣B∣=k3∣A∣ if all element of A are multiple with k )
If two rows or column of a matrix are identical then the determinant of the matrix in 0
Consider A=aaxbbyccz
∣A∣=a(bz−cy)−b(az−cx)+c(ay−bx)
=abz−acy−abz+bcx+acy−bcx=0
Suppose A is a given matrix. And we obtain a new matrix B by interchanging two rows (or two column) then ∣B∣=−∣A∣
Ex adgbehcfk
∣A∣=a(ek−fh)−b(dk−fg)=c(dh−eg)
Let B=gdahebkff
∴∣B∣=g(ec−bf)−h(de−af)+k(db−ae)
∴∣B∣=−∣A∣
Ex. adgbehcfk
∣A∣=a(ek−fh)−b(dk−fg)+e(dh−eg)
∣A⋅B∣=∣A∣∣B∣
Illustration Let A=(acbd) & B=(mpnq)
∴∣A∣=ad−bc & ∣B∣=mq−np
Now AB=(am+bpcm+dpax+bqcx+dq)
∴∣AB∣=(am+bp)(cx+dq)−(cm+dp)(ax+bq)
=amcx+bpcx+amdq+bpdq−axcm−axdp−bcmq−bdpq
Let us now consider
∣A∣⋅∣B∣=(ad−bc)(mq−np)
=admq−bcmq−adnp+bcnp
Illustration
consider A=a+kdxb+meyc+nfz
Claim ∣A∣
=adxbeycfz+kdxmeynfz
∣A∣=(a+k)eyfz−(b+m)dxfz
+(c+n)dxey
=aeyfz −bdxfz
+cdxey
=keyfz −mdxfz
+ndxey
=adxbeycfz+kdxmnynnz
Find the determinant of
111abca2b2c2
∴∣A∣=1(bc2−cb2)−a(c2−b2)+a2(c−b)
Soln. =bc(c−b)−a(c−b)(c+b)+a2(c−b)
=(c−b)(bc−ac−ab+a2)
=(c−b)(c(b−a)−a(b−a)
=(c−b)(b−a)(c−a)=((a−b)(b−c)(c−a)
If in a matrix the ith rows in replaced by the sum of ith rite jth row then the determinant does not change
Illustration -
consider A=amxbNycpz
Soln. let B=R1↔R1+R2a+mmxb+nnyc+ppz
Then ∣B∣=∣A∣
∣B∣=amxbnycpz+mmxnnyppz
=∣A∣+0
∴∣B∣=∣A∣ Since two rows are identical
More generalization
If Ri⟷Ri+kRj
Then also ∣B∣=∣A∣
or If B=a+kmmxb+knnyc+kpbz
Then ∣B∣=∣A∣
This is because
a+kmmxb+knnyc+kppz
=amxbnycpz+kmmxknnykppz
=∣A∣+kmmxnnyppz
∴∣B∣=∣A∣
Find the determinant of
111bccaaba(b+c)b(c+a)c(a+b)
Soln. = 111bccaabab+acbc+baca+cb
= 111bccaabbc+ab+acca+bc+baab+ca+cb
c3←c2+c3
=(ab+bc+ca)111bccaab111
It determinant is 0 since it has two identical columns
Therefore the determinant of the original matrix in 0
Find the determinants of
x+y+2zzzxy+z+2xxyyz+x+2y
Soln. S1:C1←C1+C2
2x+y+2z2x+y+2zx+zxy+z+2xxyyz+x+2y
S2:c1←C1+C3
2x+2y+2z2x+2y+2z2x+2z+2yxy+z+2xxyyz+x+2y
=(2x+2y+2z)111xy+z+2xxyyz+x+2y
R2←R2−R1
2(x+y+z)101xy+z+xxy0z+x+2y
R3⟵R3−R1∴ Determinant
2(x+y+z)100xx+y+z0y0x+y+z
2(x+y+z)3
What is the determinant of
235789657586
Soln. =2357899×7+29×8+39×9+5
=2357899×79×89×9+235789235
∴ Answer is 0