Determinants L-6
Determinants
lecture - 6
Determinants L-6
Determinants
- Correspondiy to each
- square matrix we associate
- a number which in called its determinants.
- square matrix can be if denoted an ((aij))i=1=1⋯x
Determinants L-6
Determinants
- If A in of order ∣x∣
- ie A= constant say a
- then its determinant is a.
- If A is 2×2, then we can write A as
- ∣A∣=a11a32−a21a12
Determinants L-6
Example
-
Ex A=[1324]
-
Then ∣A∣=1.4−3.2
-
=4−6=−2
-
Ex A=[a+bc−bc+ba−b]
-
∣A∣=(a+b)(a−b)−(c+b)(c−b)&=a2−b2−(c2−b2)=a2−c2
Determinants L-6
Example
-
Ex A=[cosθsinθ −sinθcosθ]
-
Then ∣A∣=cos2θ−sinθ(−sinθ)
-
=cos2θ+sin2θ&=1
-
Ex: A=12 24
-
Then ∣A∣=1.4−2.2=4−4 =0
Determinants L-6
Rule
-
If we are expanding along the ith row, then
-
∣A∣=(−1)i+1ai1∣Mi1∣&+(−1)i+2ai2∣Mi2∣ +(−1)i+nain∣Min∣
Determinants L-6
Determinants of along the 3rd column
-
Let me now expand along the 3rd column
-
A=143251362
-
∣A∣=(−1)1+33(4.1−3.5)+(−1)2+3.6⋅(1.1−3.2)+(−1)3+32(1.5−2.4)=3(4−15)−6(1−6)+2(5−8)=−33+30−6=−9
Determinants L-6
Determinants along row 1
-
Consider a 3×3 matrix
-
A=a11a21a31a12a22a32a13a23a33
-
Its determinant when expanded along row 1 is:
-
a11(a22a33−a23a32)−a12(a21a33−a23a31)+a13(a21a32−a22a31)
-
=a11a22a33−a11a23a32
-
−a12a21a33+a12a23a31
-
+a13a21a32−a13a22a31
Determinants L-6
Determinants along row 3
-
Expand along row 3 we have
-
∣A∣=a31(a12a23−a13a22)−a32(a11a23−a13a21)+a33(a11a22−a12a21)=a12a23a31−a13a22a31+a11a23a32+a13a31a32+a11a22a33−a12a21a33
Determinants L-6
Determinants along the 2nd Column
-
Expansion along the 2nd Column: a11a21a31a12a22a32a13a23a33
-
∣A∣ : Expanding along 2nd column. −a12(a21a33−a23a31)+a22(a11a33−a13a31)−a32(a11a23−a13a21)=−a12a21a33+a12a23a31+a11a22a33−a13a22a31−a11a23a32+a13a21a32
Determinants L-6
Determinants along the 2nd Column
- −a12(a21a33−a23a31)+a22(a11a33−a13a31)−a32(a11a23−a13a21)=−a12a21a33+a12a23a31+a11a22a33−a13a22a31−a11a23a32+a13a21a32
Determinants L-6
Properties of Determinant-1
-
Properties 1: ∣A∣=∣AT∣
-
For 2×2 we can easily verify:
-
A=acbd=ad−bcAT=(abcd)∣AT∣=ad−bc
Determinants L-6
Example
- Ex:- 3×3
- A=a11a21a31a12a22a32a13a23a33∴A⊤=a11a12a13a21a22a23a31a32a33∣AT∣=a11(a22⋅a33−a32⋅a23) - a21(a12⋅a33−a13a32)+a31(a12⋅a23−a22a13)=a11a22a33−a11a32a23−a21a12a33+a21a13a32+a31a12a23−a31a22a13
Determinants L-6
Property 2
-
Determinant of a diagonal matrix is the product of its diagonal elements
-
A=a11000a22000a33
-
∣A∣=a11(a22a33−0)−0()+0()
-
=a11a22a33
Determinants L-6
Property 3
-
The determinant of a triangular matrix in the product of its diagonal elements
-
A=a1100a12a220a13a23a33
-
∣A∣=a11(a22a33−0.a23)−0()+0()
-
=a11a22a33.
Determinants L-6
Property 4
-
If we multiply each element of a row (or column) by a constant k then the determinant will also be multiplied by k
-
i.e; if A=a11a21a31a12a22a32a13a23a33
-
B=ka11a21a31ka12a22a32ka13a23a33
Determinants L-6
Property 4
-
Then |B| is
-
ka11(a22a23−a23a32)
-
−ka12(a21a33−a31a23)
-
+ka13(a21a32−a22a31)
-
=k(a11(a22a23−a23a32)−a12(a21a33−a31a23)+a13(a21a32−a22a31))
-
=k∣A∣
Determinants L-6
Thank you
Determinants L-6 Determinants lecture - 6 $\rightarrow$ $\rightarrow$ Determinants lecture - 6 $\rightarrow$ Determinants $\rightarrow$ Determinants