-
Consider a $3 \times 3$ matrix
-
$ A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}
\end{array}\right)$
-
Its determinant when expanded along row 1 is:
-
$
\begin{aligned} & a_{11}(a_{22} a_{33}-a_{23} a_{32}) \\ &-a_{12}(a_{21} a_{33}-a_{23} a_{31}) \\ &+a_{13}(a_{21} a_{32}-a_{22} a_{31})
\end{aligned}
$
-
$ =a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32} $
-
$ -a_{12} a_{21} a_{33}+a_{12} a_{23} a_{31} $
-
$ +a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31} $