-
Example. A triangle with vertices at
-
$\left(x_1, y_1\right),\left({x}_2, y_2\right),\left(x_3, y_3\right)$ has area equal to
-
$\frac{1}{2}\left[x_1\left(y_2-y_3\right)+x_2\left(y_3-y_1\right)+x_3\left(y_1-y_2\right)\right]$.
-
Show that this expression can be obtained by evaluating the determinant
-
$\frac{1}{2}\left|\begin{array}{lll}x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1\end{array}\right| \text {. }$
-
$\therefore$ we have to show that
-
$\frac{1}{2}\left|\begin{array}{lll}x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1\end{array}\right|$
-
=$\frac{1}{2}$ $[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3 (y_1 - y_2)]$