- Briefly,
- $ \alpha x+2 y=\lambda$
- $ 3 x-2 y=\mu$
- $\alpha, \lambda, h \in \mathbb{R}$
- Is the following true?
- if $\alpha \neq-3$ then the system has a only one unique solution for all $ \lambda$ & $ \mu $.
- $\left[\begin{array}{cc}\alpha & 2 \\\ 3 & -2\end{array}\right]\left[\begin{array}{l}x \\\ y\end{array}\right]=\left[\begin{array}{l}\lambda \\\ \mu\end{array}\right]$
- $A \times x = B$