- $A(\operatorname{adj}(A)) =\operatorname{det}(A) I $
- $(\operatorname{adj}(A)) A =\operatorname{det}(A) \cdot I$
- Combining these,
- $A \cdot \operatorname{adj}(A)=\operatorname{adj}(A) \cdot A=\operatorname{det}(A) \cdot I$
- $\Rightarrow A \frac{\operatorname{adj}(A)}{\operatorname{det}(A)}=\frac{\operatorname{adj}(A)}{\operatorname{det}(A)} \cdot A=I \quad(\text { when } \operatorname{det}(A) \neq 0)$
- compare with $A A^{-1}=A^{\prime} A=I$
- $\operatorname{det}(\Delta) \neq 0)$
- $\Rightarrow A^{-1}=\frac{\operatorname{adj}(A)}{\operatorname{det}(A)}, \operatorname{det}(A) \neq 0 $