- Property 6. If two rows (or columns) of a matrix are identical, then the value of its determinant is zero
- Proof: Consider square matrix $A$. with two identical rows $ R_i R_j $
- $R_i \leftrightarrow R_j$ will give same matrix $A$
- But, from previous property, sign of determinant changes
- $-\operatorname{det}(A)=\operatorname{det}(\underbrace{A^{R_i \rightarrow R_j}}_A)$