Determinants L-2
Determinants lecture -2
→ \rightarrow → → \rightarrow → Determinants lecture -2 → \rightarrow → Recap → \rightarrow → Properties of determinants-1
Determinants L-2
Recap
"idea"
a , b , c → scalars a, b, c \rightarrow \text { scalars } a , b , c → scalars
a × ( b + c ) 2 \frac{a \times(b+c)}{2} 2 a × ( b + c ) (1 multiplication 1 addition)
= a × b + a × c 1 =\frac{a \times b+a \times c}{1} = 1 a × b + a × c (2 multiplication 1 addition)
same quantity, but different
→ \rightarrow → Determinants lecture -2 → \rightarrow → Recap → \rightarrow → Properties of determinants-1 → \rightarrow → Properties of determinants-2
Determinants L-2
Properties of determinants-1
Property 1. If the entire row (or column ) of a square matrix is zero, then the value of its determinant is also zero
Example:
[ 0 0 c d ] \left[\begin{array}{ll}0 & 0 \\c & d\end{array}\right] [ 0 c 0 d ]
→ 0 × ( ) 0 + 0 × ( ) \rightarrow \frac{0 \times()}{0} + 0 \times( ) → 0 0 × ( ) + 0 × ( )
Determinants lecture -2 → \rightarrow → Recap → \rightarrow → Properties of determinants-1 → \rightarrow → Properties of determinants-2 → \rightarrow → Properties of determinants-3
Determinants L-2
Properties of determinants-2
Property 2: For a diagonal matrix, the determinant is the product of the diagonal entries
Example:
∣ [ a 11 0 0 0 a 22 0 0 0 a 33 ] ∣ \left|\left[\begin{array}{lll}a_{11} & 0 & 0 \\0 & a_{22} & 0 \\0 & 0 & a_{33}\end{array}\right]\right| a 11 0 0 0 a 22 0 0 0 a 33
= a 11 ∣ a 22 0 0 a 33 ∣ + 0 + 0 =a_{11}\left|\begin{array}{cc}a_{22} & 0 \\0 & a_{33}\end{array}\right|+0+0 = a 11 a 22 0 0 a 33 + 0 + 0
= a 11 a 12 a 13 ‾ =\underline{a_{11} a_{12} a_{13} } = a 11 a 12 a 13
Recap → \rightarrow → Properties of determinants-1 → \rightarrow → Properties of determinants-2 → \rightarrow → Properties of determinants-3 → \rightarrow → Properties of determinants-3
Determinants L-2
Properties of determinants-3
Property 3: For a triangular matrix, the determinant is the product of diagonal entries
Example:
a) ∣ [ − a b 0 c ] ∣ = a c \left|\left[\begin{array}{cc}-a & b \\ 0 & c\end{array}\right]\right|=a c [ − a 0 b c ] = a c , just the product of the diagonal entries
b) ∣ [ a 0 0 ⋯ b 0 ⋯ ⋯ c ] ∣ \left|\left[\begin{array}{lll}a & 0 & 0 \\ \cdots & b & 0 \\ \cdots & \cdots & c\end{array}\right]\right| a ⋯ ⋯ 0 b ⋯ 0 0 c
= a ∣ b 0 ⋅ c ∣ =a\left|\begin{array}{ll}b & 0 \\ \cdot & c\end{array}\right| = a b ⋅ 0 c
= a b c =a b c = ab c , again the product of diagonal
Properties of determinants-1 → \rightarrow → Properties of determinants-2 → \rightarrow → Properties of determinants-3 → \rightarrow → Properties of determinants-3 → \rightarrow → Properties of determinants-4
Determinants L-2
Properties of determinants-3
Note :
[ ( 0 0 a b ) ] \left[\left(\begin{array}{cc}0 & 0 \\ a & b\end{array}\right)\right] [ ( 0 a 0 b ) ]
∴ \therefore ∴ area enclosed by the column vectors is 0
Consistent with the determinant being 0
Properties of determinants-2 → \rightarrow → Properties of determinants-3 → \rightarrow → Properties of determinants-3 → \rightarrow → Properties of determinants-4 → \rightarrow → Properties of determinants-5
Determinants L-2
Properties of determinants-4
Property 4. Interchanging the row and column of a square matrix, IT does not change the value of determinant
det ( A ) = det ( A ⊤ ) \operatorname{det}(A)=\operatorname{det}\left(A^{\top}\right) det ( A ) = det ( A ⊤ )
Example
[ a b c d ] transpose [ a c b d ] {\left[\begin{array}{ll}a & b \\c & d\end{array}\right] \text { transpose }\left[\begin{array}{ll}a & c \\b & d\end{array}\right]} [ a c b d ] transpose [ a b c d ]
a d − b c ⟷ same a d − b c a d-b c \stackrel{\text { same }}{\longleftrightarrow} a d-b c a d − b c ⟷ same a d − b c
Properties of determinants-3 → \rightarrow → Properties of determinants-3 → \rightarrow → Properties of determinants-4 → \rightarrow → Properties of determinants-5 → \rightarrow → Properties of determinants-6
Determinants L-2
Properties of determinants-5
R 1 → R 2 → [ a b c d ] {\left.\begin{array}{ll}
R_1 \rightarrow \\
R_2 \rightarrow
\end{array}\right.} {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]} R 1 → R 2 → [ a c b d ]
R 1 ↔ R 2 ⇒ [ c d a b ] {R_ 1 \leftrightarrow R_2 \Rightarrow\left[\begin{array}{ll}
c & d \\
a & b
\end{array}\right]} R 1 ↔ R 2 ⇒ [ c a d b ]
a d − b c , c b − a d = − ( a d − b c ) \begin{aligned} & a d-b c , \quad c b-a d \ & =-(a d-b c) \ & \end{aligned} a d − b c , c b − a d = − ( a d − b c )
Properties of determinants-3 → \rightarrow → Properties of determinants-4 → \rightarrow → Properties of determinants-5 → \rightarrow → Properties of determinants-6 → \rightarrow → Properties of determinants-6
Determinants L-2
Properties of determinants-6
Property 6. If two rows (or columns) of a matrix are identical, then the value of its determinant is zero
Proof: Consider square matrix A A A . with two identical rows R i R j R_i R_j R i R j
R i ↔ R j R_i \leftrightarrow R_j R i ↔ R j will give same matrix A A A
But, from previous property, sign of determinant changes
− det ( A ) = det ( A R i → R j ⏟ A ) -\operatorname{det}(A)=\operatorname{det}(\underbrace{A^{R_i \rightarrow R_j}}_A) − det ( A ) = det ( A A R i → R j )
Properties of determinants-4 → \rightarrow → Properties of determinants-5 → \rightarrow → Properties of determinants-6 → \rightarrow → Properties of determinants-6 → \rightarrow → Properties of determinants-6
Determinants L-2
Properties of determinants-6
Note : Consider 3 × 3 3 \times 3 3 × 3 matrix
[ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] \left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{array}\right] a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33
A i j A_{i j} A ij is cofactor of a i j a_{i j} a ij
d e t = a 11 A 11 + a 12 A 12 + a 13 A 13 d e t=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13} d e t = a 11 A 11 + a 12 A 12 + a 13 A 13
a 11 A 21 + a 12 A 22 + a 13 A 23 = ? a_{11} A_{21}+a_{12} A_{22}+a_{13} A_{23}=? a 11 A 21 + a 12 A 22 + a 13 A 23 = ?
a 11 A 21 + a 12 A 22 + a 13 A 23 = 0 a_{11} A_{21}+a_{12} A_{22}+a_{13} A_{23}=0 a 11 A 21 + a 12 A 22 + a 13 A 23 = 0
= a 11 ( − 1 ) 2 + 1 ∣ a 12 a 13 a 32 a 33 ∣ + a 12 ( − 1 ) 2 + 2 ∣ a 11 a 13 a 31 a 33 ∣ =a_{11}(-1)^{2+1}\left|\begin{array}{ll}a_{12} & a_{13} \\ a_{32} & a_{33}\end{array}\right|+a_{12}(-1)^{2+2}\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{31} & a_{33}\end{array}\right| = a 11 ( − 1 ) 2 + 1 a 12 a 32 a 13 a 33 + a 12 ( − 1 ) 2 + 2 a 11 a 31 a 13 a 33 + a 13 ( − 1 ) 2 + 3 ∣ a 11 a 12 a 31 a 32 ∣ + a_{13}(-1)^{2+3}\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right| + a 13 ( − 1 ) 2 + 3 a 11 a 31 a 12 a 32
Properties of determinants-5 → \rightarrow → Properties of determinants-6 → \rightarrow → Properties of determinants-6 → \rightarrow → Properties of determinants-6 → \rightarrow → Properties of determinants-7
Determinants L-2
Properties of determinants-6
= − 1 [ a 11 ∣ a 12 a 13 a 32 a 33 ∣ ] − = -1[a_{11}\left|\begin{array}{ll}a_{12} & a_{13} \\ a_{32} & a_{33}\end{array}\right|] - = − 1 [ a 11 a 12 a 32 a 13 a 33 ] − [ a 12 ∣ a 11 a 13 a 31 a 33 ∣ ] + [ a 13 ∣ a 11 a 12 a 31 a 32 ∣ ] = − ∣ [ a 11 a 12 a 13 a 11 a 12 a 13 a 31 a 32 a 33 ] ∣ = 0 [a_{12}\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{31} & a_ {33}\end{array}\right|] + [a_ {13}\left|\begin{array}{ll}a_ {11} & a_ {12} \\ a_ {31} & a_ {32}\end{array}\right|] =-\left|\left[\begin{array}{lll}a_{11} & a_ {12} & a_ {13} \\ a_ {11} & a_ {12} & a_ {13} \\ a_ {31} & a_ {32} & a_{33}\end{array}\right]\right|=0 [ a 12 a 11 a 31 a 13 a 33 ] + [ a 13 a 11 a 31 a 12 a 32 ] = − a 11 a 11 a 31 a 12 a 12 a 32 a 13 a 13 a 33 = 0
Properties of determinants-6 → \rightarrow → Properties of determinants-6 → \rightarrow → Properties of determinants-6 → \rightarrow → Properties of determinants-7 → \rightarrow → Properties of determinants-8
Determinants L-2
Properties of determinants-7
Property 7: If each element of a row (or a column) is multiplied by a constant ' k k k ' 'then the value of the determinant gets multiplied by 'k k k '
Example:
[ a b c d ] → R 1 → k R 1 [ k a k b c d ] {\left[\begin{array}{ll}a & b \\c & d\end{array}\right] \xrightarrow{R_1 \rightarrow k R_1}\left[\begin{array}{rr}k a & k b\\c & d\end{array}\right]} [ a c b d ] R 1 → k R 1 [ ka c kb d ]
↓ \quad \downarrow ↓ ↓ \qquad \qquad \qquad \qquad \downarrow ↓
a d − b c k a ( d ) − k b ( c ) = k [ a ( d ) − b ( c ) ] ad -bc \quad \quad \quad k a(d)-k b(c) =k\left[a(d)-b (c)\right] a d − b c ka ( d ) − kb ( c ) = k [ a ( d ) − b ( c ) ]
⇒ \Rightarrow ⇒ det scales by 'k'.
Properties of determinants-6 → \rightarrow → Properties of determinants-6 → \rightarrow → Properties of determinants-7 → \rightarrow → Properties of determinants-8 → \rightarrow → Properties of determinants-9
Determinants L-2
Properties of determinants-8
Property 8: If some or all elements of a new (or column)can be written as a sum of two terms, then the determinant can be expressed as the sum of determinants of matrices obtained by separating the origin matrix
Example:
∣ [ a + x b + y c d ] ∣ = ∣ a b c d ∣ + ∣ x y c d ∣ \left|\left[\begin{array}{cc}a+x & b+y \\ c & d\end{array}\right]\right|=\left|\begin{array}{ll}a & b \\c & d\end{array}\right|+\left|\begin{array}{ll}x & y \\c & d\end{array}\right| [ a + x c b + y d ] = a c b d + x c y d
( a + x ) ( d ) + ( b + y ) ( − c ) (a+x) (d)+(b+y) (-c) ( a + x ) ( d ) + ( b + y ) ( − c )
= a ( d ) + b ( − c ) + x ( d ) + y ( − c ) ={a(d)+b (-c)} +{x(d)+y (-c)} = a ( d ) + b ( − c ) + x ( d ) + y ( − c )
= d e t [ a b c d ] + d e t [ x y c d ] = {det}\left[\begin{array}{ll}a & b \\c & d\end{array}\right] + {det}\left[\begin{array}{ll}x & y \\c & d\end{array}\right] = d e t [ a c b d ] + d e t [ x c y d ]
Properties of determinants-6 → \rightarrow → Properties of determinants-7 → \rightarrow → Properties of determinants-8 → \rightarrow → Properties of determinants-9 → \rightarrow → Thank you
Determinants L-2
Properties of determinants-9
Property 9: If each element of a row(or column) is replaced by a sum of that element and an element of another row or column), then the value of the determinant remains the some
Example:
[ a b c d ] → R 1 → R 1 + R 2 [ a + c b + d c d ] \left[\begin{array}{ll}a & b \\c & d\end{array}\right] \xrightarrow{R_ 1 \rightarrow R_1+R_2} \left[\begin{array}{cc}a+c & b+d \\c & d\end{array}\right] [ a c b d ] R 1 → R 1 + R 2 [ a + c c b + d d ]
↓ \quad \quad \downarrow ↓ ↓ \qquad \qquad \qquad \qquad \qquad \downarrow ↓
a d − b c a d-b c a d − b c \qquad \qquad \qquad ∣ a b c d ∣ + ∣ c d c d ∣ = ∣ a b c d ∣ + 0 \left|\begin{array}{ll}a & b \\c & d\end{array}\right|+ \left|\begin{array}{cc}c & d \\c & d\end{array}\right| = \left|\begin{array}{ll}a & b \\c & d\end{array}\right| + 0 a c b d + c c d d = a c b d + 0
Properties of determinants-7 → \rightarrow → Properties of determinants-8 → \rightarrow → Properties of determinants-9 → \rightarrow → Thank you → \rightarrow →
Determinants L-2
Thank you
Properties of determinants-8 → \rightarrow → Properties of determinants-9 → \rightarrow → Thank you → \rightarrow → → \rightarrow →
Resume presentation
Determinants L-2 Determinants lecture -2 $\rightarrow$ $\rightarrow$ Determinants lecture -2 $\rightarrow$ Recap $\rightarrow$ Properties of determinants-1