Determinants L-1
Determinants lecture 1
→ \rightarrow → → \rightarrow → Determinants lecture 1 → \rightarrow → Determinants → \rightarrow → Determinants 2 × 2 2 \times 2 2 × 2
Determinants L-1
Determinants
a ‘useful’ number associated with a square matrix
Example: System of equations-
x + y = 10 4 x = y
\begin{gathered}
x+y=10 \\
4 x=y
\end{gathered} x + y = 10 4 x = y
→ \rightarrow → Determinants lecture 1 → \rightarrow → Determinants → \rightarrow → Determinants 2 × 2 2 \times 2 2 × 2 → \rightarrow → Determinants 2 × 2 2 \times 2 2 × 2
Determinants L-1
Determinants 2 × 2 2 \times 2 2 × 2
⇒ x + y = 10 \Rightarrow x+y=10 ⇒ x + y = 10
⇒ 4 x − y = 0 \Rightarrow 4 x-y=0 ⇒ 4 x − y = 0
[ 1 1 4 − 1 ] [ x y ] \left[\begin{array}{ll}
1 & 1 \\
4 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] [ 1 4 1 − 1 ] [ x y ] = [ 10 0 ] \left[\begin{array}{c}
10 \\
0
\end{array}\right] [ 10 0 ]
[ a b c d ] [ x y ] \left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] [ a c b d ] [ x y ] = [ M N ] \left[\begin{array}{c}
M \\
N
\end{array}\right] [ M N ]
⇒ 2 × 2 \Rightarrow 2 \times 2 ⇒ 2 × 2 square matrix
Determinants lecture 1 → \rightarrow → Determinants → \rightarrow → Determinants 2 × 2 2 \times 2 2 × 2 → \rightarrow → Determinants 2 × 2 2 \times 2 2 × 2 → \rightarrow → Determinants 2 × 2 2 \times 2 2 × 2
Determinants L-1
Determinants 2 × 2 2 \times 2 2 × 2
d × [ a x + b y = M − b × [ c x + d y = N ⇒ ( a d − b c ) x = d M − b N if a d − b c ≠ 0 ⇒ x = d M − b N a d − b c
\begin{gathered}
d \times[a x+b y=M \\ -b \times[c x+d y=N \\
\Rightarrow(a d-b c) x=d M-b N \\
\text { if } a d-b c \neq 0 \\
\Rightarrow x=\frac{d M-b N}{a d-b c}
\end{gathered}
d × [ a x + b y = M − b × [ c x + d y = N ⇒ ( a d − b c ) x = d M − b N if a d − b c = 0 ⇒ x = a d − b c d M − b N
Similarly , for y y y ,
a x + b y = M c x + d y = N
\begin{aligned}
a x+b y & =M \\
c x+d y & =N
\end{aligned}
a x + b y c x + d y = M = N
Determinants → \rightarrow → Determinants 2 × 2 2 \times 2 2 × 2 → \rightarrow → Determinants 2 × 2 2 \times 2 2 × 2 → \rightarrow → Determinants 2 × 2 2 \times 2 2 × 2 → \rightarrow → Determinants as an area
Determinants L-1
Determinants 2 × 2 2 \times 2 2 × 2
⇒ y = c M − a N b c − a d \Rightarrow y=\frac{c M-a N}{b c-a d} ⇒ y = b c − a d c M − a N
This is for a d − b c ≠ 0 a d-b c \neq 0 a d − b c = 0
[ a b c d ] [ x y ] = [ M N ]
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
M \\
N
\end{array}\right]
[ a c b d ] [ x y ] = [ M N ]
solutions found when a d − b c ≠ 0 a d-b c \neq 0 a d − b c = 0
Thus, this is the determinant of the 2 × 2 2\times2 2 × 2 matrix [ a b c d ] \left[\begin{array}{ll}a & b \\ c & d\end{array}\right] [ a c b d ]
Determinants 2 × 2 2 \times 2 2 × 2 → \rightarrow → Determinants 2 × 2 2 \times 2 2 × 2 → \rightarrow → Determinants 2 × 2 2 \times 2 2 × 2 → \rightarrow → Determinants as an area → \rightarrow → Determinants as an area
Determinants L-1
Determinants as an area
Determinant provides a way to check for the existence of solution in a linear system of equations
Example 2: deteteminant as an area
A = [ a c b d ] area = a d − b c
\begin{aligned}
& A=\left[\begin{array}{l}
a \\
c
\end{array}\begin{array}{l}
b \\
d
\end{array}\right] \\
& \text { area }=a d-b c \
&
\end{aligned}
A = [ a c b d ] area = a d − b c
Determinants 2 × 2 2 \times 2 2 × 2 → \rightarrow → Determinants 2 × 2 2 \times 2 2 × 2 → \rightarrow → Determinants as an area → \rightarrow → Determinants as an area → \rightarrow → Determinants as an area
Determinants L-1
Determinants as an area
Δ = ( a + b ) ( c + d ) − 1 2 a c − b c − 1 2 b d − 1 2 b d − b c − 1 2 a c
\begin{aligned}
&\begin{aligned}
\Delta= & (a+b)(c+d) \\
& -\frac{1}{2} a c-b c\\-\frac{1}{2} b d
& -\frac{1}{2} b d-b c\\-\frac{1}{2} a c
\end{aligned}\
\end{aligned}
Δ = − 2 1 b d − 2 1 a c ( a + b ) ( c + d ) − 2 1 a c − b c − 2 1 b d − b c
Determinants 2 × 2 2 \times 2 2 × 2 → \rightarrow → Determinants as an area → \rightarrow → Determinants as an area → \rightarrow → Determinants as an area → \rightarrow → Determinants example
Determinants L-1
Determinants as an area
Δ = ( a + b ) ( c + d ) − a c − b d − 2 b c = a c + a d + b c + b d − a c − b d − 2 b c = a d − b c [ a b c d ] → Δ = a d − b c
\begin{aligned}
& \Delta=(a+b)(c+d)-a c-b d-2 b c \\
&=a c+a d+b c+b d-a c-b d-2 b c \\
&=a d-b c \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \rightarrow \Delta = a d-b c }
\end{aligned}
Δ = ( a + b ) ( c + d ) − a c − b d − 2 b c = a c + a d + b c + b d − a c − b d − 2 b c = a d − b c [ a c b d ] → Δ = a d − b c
Determinant gives the ‘area’ of parallelogram formed from the columns of a matrix
Determinants as an area → \rightarrow → Determinants as an area → \rightarrow → Determinants as an area → \rightarrow → Determinants example → \rightarrow → Determinants
Determinants L-1
Determinants example
Go back to initial example
[ 1 1 4 − 1 ] 2 × 2 [ x y ] = [ 10 0 ]
\left[\begin{array}{ll}
1 & 1 \\
4 & -1
\end{array}\right]_{2\times2}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
10 \\
0
\end{array}\right]
[ 1 4 1 − 1 ] 2 × 2 [ x y ] = [ 10 0 ]
determinant is
1 × ( − 1 ) − 1 × 4 1 \times(-1)-1 \times 4 1 × ( − 1 ) − 1 × 4
= − 1 − 4 = − 5 ≠ 0 =-1-4=-5 \neq 0 = − 1 − 4 = − 5 = 0
∴ \therefore ∴ Solution exists.
Also, area is ∣ − 5 ∣ |-5| ∣ − 5∣ (absolute value)= 5 =5 = 5
Determinants as an area → \rightarrow → Determinants as an area → \rightarrow → Determinants example → \rightarrow → Determinants → \rightarrow → Determinants
Determinants L-1
Determinants
Notation: det ( A ) \operatorname{det}(A) det ( A ) or ∣ A ∣ |A| ∣ A ∣
A A A is a square matrix
⟶ \longrightarrow ⟶ Define a determinant
⟶ \longrightarrow ⟶ Properties
⟶ \longrightarrow ⟶ Applications
Determinants as an area → \rightarrow → Determinants example → \rightarrow → Determinants → \rightarrow → Determinants → \rightarrow → Example
Determinants L-1
Determinants
Definition
A n × n = [ a i j ] n × n A_{n \times n}=\left[a_{i j}\right]_{n\times n} A n × n = [ a ij ] n × n
i t h i^{th} i t h row , j t h j^{th} j t h column
= [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ]
\begin{gathered}
=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
\end{gathered}
= a 11 a 21 ⋮ a n 1 a 12 a 22 ⋮ a n 2 ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a nn
j t h c o l u m n \quad \quad \quad j^{th} column j t h co l u mn
= i t h r o w [ ⋮ ⋯ a i j ⋯ ⋮ ] = i^{th} row\left[\begin{array}{ccc}& \vdots & \\ \cdots & a_{ij} & \cdots \\ & \vdots & \end{array}\right] = i t h ro w ⋯ ⋮ a ij ⋮ ⋯
Goal: det ( A ) \operatorname{det}(A) det ( A ) in terms of a i j a_{i j} a ij
Determinants example → \rightarrow → Determinants → \rightarrow → Determinants → \rightarrow → Example → \rightarrow → Example
Determinants L-1
Example
Minor , M i j M_{i j} M ij is associated with each entry a i j a_{ij} a ij . It is the determinant of a matrix obtained from A A A after deleting the i t h i^{th} i t h row and j t h j^{th} j t h column
Example: A = [ a 11 = 1 a 12 = 1 a 21 = 4 a 22 = − 1 ]
\text { Example: } \quad A=\left[\begin{array}{cc}
a_{11}=1 & a_{12}=1 \\
a_{21}=4 & a_{22}=-1
\end{array}\right]
Example: A = [ a 11 = 1 a 21 = 4 a 12 = 1 a 22 = − 1 ]
what is minor of a 12 a_{12} a 12 i.e. M 12 M_{12} M 12
M 12 = det ( [ 4 ] ) = 4
M_{12}=\operatorname{det}([4])=4
M 12 = det ([ 4 ]) = 4
as we take detaminant of scalar as itself
Determinants → \rightarrow → Determinants → \rightarrow → Example → \rightarrow → Example → \rightarrow → Properties
Determinants L-1
Example
Cofactor , A i j A_{ij} A ij is defined as
A i j = ( − 1 ) i + j M i j
A_{i j}=(-1)^{i+j} M_{i j}
A ij = ( − 1 ) i + j M ij
In example before,
A 12 = ( − 1 ) 1 + 2 ⋅ M 12 = ( − 1 ) 3 M 12 = − M 12 = − 4.
\begin{aligned}
A_{12} & =(-1)^{1+2} \cdot M_{12} \\
& =(-1)^3 M_{12} \\
& =-M_{12} \\
& =-4 .
\end{aligned}
A 12 = ( − 1 ) 1 + 2 ⋅ M 12 = ( − 1 ) 3 M 12 = − M 12 = − 4.
Determinants → \rightarrow → Example → \rightarrow → Example → \rightarrow → Properties → \rightarrow → Example
Determinants L-1
Properties
Determinant is the sum of the product of elements of a row (or a column) with their corresponding cofactors .
det ( A ) = ∑ i a i j ⋅ A i j for fixed j or = ∑ j a i j ⋅ A i j for fixed i
\begin{gathered}
\operatorname{det}(A)=\sum_i a_{i j} \cdot A_{i j} \text { for fixed}~ j \\
\operatorname{or}=\sum_j a_{i j} \cdot A_{i j} \text { for fixed } i
\end{gathered}
det ( A ) = i ∑ a ij ⋅ A ij for fixed j or = j ∑ a ij ⋅ A ij for fixed i
Example → \rightarrow → Example → \rightarrow → Properties → \rightarrow → Example → \rightarrow → Example
Determinants L-1
Example
Example: 1 × 1 1 \times 1 1 × 1
matrix which is a scalar. Its determinant was taken as the scalar itself
Example: 2 × 2 2 \times 2 2 × 2 matrix
[ a b c d ] = a ⋅ d + b ⋅ ( − c )
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a \cdot d+b\cdot (-c)
[ a c b d ] = a ⋅ d + b ⋅ ( − c )
cofactor of ' a a a ': d ( − 1 ) 1 + 1 = d d(-1)^{1+1}=d d ( − 1 ) 1 + 1 = d
cofactor of ' b b b ': c ( − 1 ) 1 + 2 = − c \quad c(-1)^{1+2}=-c c ( − 1 ) 1 + 2 = − c
det ( [ a b c d ] ) = a d − b c \operatorname{det}(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right])=a d-b c det ( [ a c b d ] ) = a d − b c
Example → \rightarrow → Properties → \rightarrow → Example → \rightarrow → Example → \rightarrow → Example
Determinants L-1
Example
Let's expand a column,
[ a b ↓ c d ] = b ( − c ) + d ( a ) = a d − b c ! !
\begin{aligned}
{\left[\begin{array}{ll}
a & b \downarrow \
c & d
\end{array}\right] } & =b(-c)+d(a) \
& =a d-b c ! !
\end{aligned}
[ a b ↓ c d ] = b ( − c ) + d ( a ) = a d − b c !!
which is same as before
⟶ \longrightarrow ⟶ formal definition of determinant
⟶ \longrightarrow ⟶ a number to check existance of solutions
⟶ \longrightarrow ⟶ as area of parallelogram
Properties → \rightarrow → Example → \rightarrow → Example → \rightarrow → Example → \rightarrow → Remarks
Determinants L-1
Example
Example: 3 × 3 3 \times 3 3 × 3 matrix
[ 1 0 2 3 − 1 2 5 2 0 ] {\left[\begin{array}{ccc}
1 & 0 & 2 \\
3 & -1 & 2 \\
5 & 2 & 0
\end{array}\right] } 1 3 5 0 − 1 2 2 2 0 det ? \operatorname{det} ? det ?
det \operatorname{det} det = 1 × ( − 1 ) 1 + 1 ∣ − 1 2 2 0 ∣ = 1 \times(-1)^{1+1}\left|\begin{array}{cc}
-1 & 2 \\
2 & 0 \end{array}\right| = 1 × ( − 1 ) 1 + 1 − 1 2 2 0 + 0 × 0 + 2 × ( − 1 ) 1 + 3 ∣ 3 − 1 5 2 ∣ +0 \times 0
+2 \times(-1)^{1+3}\left|\begin{array}{cc}
3 & -1 \\
5 & 2\end{array}\right| + 0 × 0 + 2 × ( − 1 ) 1 + 3 3 5 − 1 2
= 1 ( − 1 × 0 − 2 × 2 ) + 2 ( 3 × 2 − ( − 1 ) × 5 ) = − 4 + 2 ( 6 + 5 ) = − 4 + 22 = 18 = 1(-1 \times 0-2 \times 2)+2(3 \times 2-(-1) \times 5) \\
= -4+2(6+5)\\=-4+22=18 = 1 ( − 1 × 0 − 2 × 2 ) + 2 ( 3 × 2 − ( − 1 ) × 5 ) = − 4 + 2 ( 6 + 5 ) = − 4 + 22 = 18
Example → \rightarrow → Example → \rightarrow → Example → \rightarrow → Remarks → \rightarrow → Thank you
Determinants L-1
⟶ \longrightarrow ⟶ defining a determinant
⟶ \longrightarrow ⟶ these arise in many contents such as solutions exist? and in computing areas
We aim to look at properties of determinants which will help in their evaluation
Example → \rightarrow → Example → \rightarrow → Remarks → \rightarrow → Thank you → \rightarrow →
Determinants L-1
Thank you
Example → \rightarrow → Remarks → \rightarrow → Thank you → \rightarrow → → \rightarrow →
Resume presentation
Determinants L-1 Determinants lecture 1 $\rightarrow$ $\rightarrow$ Determinants lecture 1 $\rightarrow$ Determinants $\rightarrow$ Determinants $2 \times 2$