-
Definition
-
$A_{n \times n}=\left[a_{i j}\right]_{n\times n}$
-
$i^{th}$row , $j^{th}$ column
-
$
\begin{gathered}
=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
\end{gathered}
$
-
$\quad \quad \quad j^{th} column$
-
$= i^{th} row\left[\begin{array}{ccc}& \vdots & \\ \cdots & a_{ij} & \cdots \\ & \vdots & \end{array}\right]$
-
Goal: $\operatorname{det}(A)$ in terms of $a_{i j}$