let $S$ be the set of all column matrices $\left[\begin{array}{l}b_1 \\ b_2 \\ b_3\end{array}\right]$ such that $b_1, b_2, b_3 \in \mathbb{R}$, and the system of equations (in real variables)
$ \begin{aligned} & -x+2 y+5 z=b_1 \\ & 2 x-4 y+3 z=b_2 \\ & x-2 y+2 z=b_3 \end{aligned} $
has at least one solution. Then, which of the following systems (in real variables)?
have at least one solution for each
$\left[\begin{array}{l}b_ 1 \\ b_ 2 \\ b_3\end{array}\right] \in S$?
a) $ x+2 y+3 z=b_1, 4 y+5 z=b_2, \\ x+2 y+6 z=b_3$
b) $ x+y+3 z=b_1, 5 x+2 y+6 z=b_2,\\ -2 x-y-3 z=b_3$
c) $ -x+2 y-5 z=b_1, 2 x-4 y+10 z=b_2,\\ x-2 y+5 z=b_3$
d) $ x+2 y+5 z=b_1, 2 x+3 z=b_2, \\ x+4 y-5 z=b_3$
Consider the system of linear equations
$ -x+2 y+5 z=b_1 $
$ 2 x-4 y+3 z=b_2 $
$ x-2 y+2 z=b_3 $
$ R_2 \rightarrow R_2+2 R_1, R_3 \rightarrow R_3+R_1 $
$ \left[\begin{array}{ccc|c}-1 & 2 & 5 & b_1 \\ 2 & -4 & 3 & b_2 \\ 1 & -2 & 2 & b_3\end{array}\right]$
$ \backsim\left[\begin{array}{ccc|c}-1 & 2 & 5 & b_1 \\ 0 & 0 & 13 & b_2+2 b_1 \\ 0 & 0 & 7 & b_3+b_1\end{array}\right] \quad R_3 \rightarrow R_3-\frac{7}{13} R_2 $
$ \backsim\left[\begin{array}{ccc|c}-1 & 2 & 5 & b_1 \\ 0 & 0 & 13 & b_2+2 b_1 \\ 0 & 0 & 0 & b_3+b_1-\frac{7}{13}\left(b_2+2 b_1\right)\end{array}\right] $
$ \left[\begin{array}{ccc|c}-1 & 2 & 5 & b_1 \\ 0 & 0 & 13 & b_2+2 b_1 \\ 0 & 0 & 0 & \frac{13 b_3+23 b_1-7 b_2-14 b_1}{13}\end{array}\right]$
(b) Therefore, in particular (1) has at least one solution for all
$\left[\begin{array}{l}b_1 \\b_2 \\b_3\end{array}\right] \in S $
$ x+y+3 z=b_1 $
$5 x+2 y+6 z=b_2 $
$-2 x-y-3 z=b_3$
$\left[\begin{array}{ccc|c}1 & 1 & 3 & b_1 \\ 5 & 2 & 6 & b_2 \\ -2 & -1 & -3 & b_3\end{array}\right] \sim\left[\begin{array}{ccc|c}1 & 1 & 3 & b_1 \\ 0 & -3 & -9 & b_2-5 b_2 \\ 0 & 1 & 3 & b_3+2 b_1\end{array}\right] $
$ \begin{aligned} & R_2 \rightarrow \ & R_2-5 R_1 ,\ & R_3 \rightarrow R_3 \ & +2 R_1\end{aligned}$
$ R_3 \rightarrow R_3+\frac{1}{3} R_2 $
$ \sim\left[\begin{array}{ccc|c}1 & 1 & 3 & b_1 \\0 & -3 & -9 & b_2-5 b_1 \\0 & 0 & 0 & b_3+2 b_1+\frac{1}{3}\left(b_2-5 b_1\right)\end{array}\right] $
$ \sim\left[\begin{array}{rrr|r}1 & 1 & 3 & b_1 \\0 & -3 & -9 & b_2-5 b_1 \\0 & 0 & 0 & \frac{b_1+b_2+3 b_3}{3} \end{array}\right] $
$\Rightarrow$ For system (2) to have at least one solution for each $\left[\begin{array}{l}b_1 \ b_2 \ b_3\end{array}\right] \in S$
we should have
$b_1+b_2+3 b_3=0 \quad \forall\left[\begin{array}{l}b_1 \\b_2 \\b_3\end{array}\right] \in S $
But this condition in not true for all $\left[\begin{array}{l}b_1 \\ b_2 \\ b_3\end{array}\right] \in S$, became
$\left[\begin{array}{l}6 \\2 \\1\end{array}\right] \in S $
$ 13 b_3=b_1+7 b_2 $ but condition (3) does not hold.
But
$\left[\begin{array}{l}6 \\ 1 \\ 1\end{array}\right] $
$ \in S $ doesn’t satisfy both these condition. Therefore system (4) will not have atleant one solution for all $ \left[\begin{array}{l}b_1 \\ b_2 \\ b_3\end{array}\right] $ $\in S$
d)
$x+2 y+5 z =b_1 $
$2 x+3 z =b_2 $
$x+4 y-5 z =b_3 $
$ R_3 \rightarrow R_3+1 / 2 R_2 $
$ \sim\left[\begin{array}{ccc|c}1 & 2 & 5 & b_1 \\0 & -4 & -7 & b_2-2 b_1 \\0 & 0 & -\frac{27}{2} & b_3-b_1+\frac{1}{2}(b_2-2 b_1)\end{array}\right] $
$\operatorname{Ran} K(A)=\operatorname{Ran} K(A \mid b)=3 \quad \forall b_1, b_2, b_3$ $\Rightarrow$ (5) has at least one solution for all $\left[\begin{array}{l}b_1 \\ b_2 \\ b_3\end{array}\right] \in S$
let $(x, y, z)$ be a point with integer coordinates satisfying the system of homogeneous equations
$ 3 x-y-z=0 $
$ -3 x+z=0 $
$ -3 x+2 y+z=0 $
Then, how many points satisfy $\quad x^2+y^2+z^2 \leq 100$
$b=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] $
$A =\left[\begin{array}{ccc}3 & -1 & -1 \\ -3 & 0 & 1 \\ -3 & 2 & 1\end{array}\right]$
$ \operatorname{Rank}(A)=\operatorname{Rank}(A \mid B) $
$ A=\left[\begin{array}{ccc}3 & -1 & -1 \\ -3 & 0 & 1 \\ -3 & 2 & 1\end{array}\right] $
$ \sim\left[\begin{array}{ccc}3 & -1 & -1 \\ 0 & -1 & 0 \\ 0 & 1 & 0\end{array}\right] $
$ \quad \begin{array}{l}R_3 \rightarrow R_2+R_1 \\ R_3 \rightarrow R_3+R_1\end{array} $
$ \sim\left[\begin{array}{ccc}3 & -1 & -1 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right] \quad R_3 \rightarrow R_3+R_2 $
$ \operatorname{Rank}(A)=2<3 $
$\Rightarrow$ system has in finitely many solutions
$ \left[\begin{array}{ccc}3 & -1 & -1 \\0 & -1 & 0 \\0 & 0 & 0\end{array}\right] $
$ \left[\begin{array}{l}x \\y \\z\end{array}\right] $= $\left[\begin{array}{l}0 \\0 \\0\end{array}\right] $
$ 3 x-y-z=0, \quad y=0 $
$ \Rightarrow \quad z=3 x $
$={(\alpha, 0,3 \alpha) \mid \alpha }$ integers
in set of integer solution of system of equations
Consider the following linear equations
$ a x+b y+c z=0 $
$ b x+c y+a z=0 $
$ c x+a y+b z=0 $
i) If $a+b+c \neq 0$ and $a^2+b^2+c^2=a b+b c+c a$ Show that the equations represent identical planes
ii) If $a+b+c \neq 0, \quad a^2+b^2+c^2 \neq a b+b c+c a$ Then, show that the equations $r$ present planes meeting at a single point.
iii) If $a+b+c=0$ and $a^2+b^2+c^2=a b+b c+c a$,
show that equations represent the whole of $\mathbb{R}^3$.
$\Rightarrow$ equations reperent the identical planes.
ii)
$ a+b+c \neq 0, a^2+b^2+c^2 \neq a b+b c+c a $
$ A=\left[\begin{array}{lll}a & b & c \\b & c & a \\c & a & b\end{array}\right] $
$ \operatorname{det} A=a\left(b c-a^2\right)-b\left(b^2-a c\right)+c\left(a b-c^2\right) $
$=3 a b c-a^3-b^3-c^3 $
(iii) $ a+b+c=0 \quad 4 \quad a^2+b^2+c^2=a b+b c+c a $
$ \Rightarrow a^2+b^2+c^2=a b+b c+c a $
gives us $a=b=c$
$\Rightarrow a+a+a=0 \Rightarrow a=0$
$\Rightarrow \quad a=b=c=0 $
$\Rightarrow$ Any $\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^3$ will be the solution of system of equations
$\Rightarrow$ Equations represent the whole of $ \ R^3$.