Find the total number of distinct x∈R for which
x2x3xx24x29x21+x31+8x31+27x3=10
Ans:-
x2x3xx24x29x2111+x2x3xx24x29x2x38x327x3=10
x×x2123149111+x×x2×x31231491827=10
⇒ x3(1(4−9)−1(2−3)+1(18−12)) + x6×2×3 111123149=10
2x3+12x6=10
⇒6x6+x3−5=0
⇒6x6+6x3−5x3−5=0
⇒6x3(x3+1)−5(x3+1)=0
⇒(x3+1)(6x3−5)=0
(x3+1)=0 or x3+a3=(x+a)(x2−ax+a2)=06x3−5=0x3−5/6=0
⇒x=−a,x=a±a2−4a2 are roots of x=2a+32ix3+a3=0
Let A=(1+α)2(2+α)2(3+α)2(1+2α)2(2+2α)2(3+2α)2(1+3−α)2(2+3α)2(3+3α)2
be 3×3 matrix such that detA=−648α
Then, what will be the value of α ?
detA=1+2α+α24+4α+α29+6α+α21+4α+4α24+8α+4α29+12α+4α21+6α+4α24+12α+α29+18α+9α2
R2→R2−R1, R3→R3−R1
=1+2α+α23+2α8+4α1+4α+4α23+4α8+8α1+6α+9α23+6α8+12α
R3→R3−2R2
detA=1+2α+α23+2α21+4α+4α23+4α21+6α+9α23+6α2
c2→c2−c1,c3→c3−c1
=1+2α+α23+2α22α+3α22α04α+2α24α0
=2(4α(2α+3α2)−2α(4α+8α2))
let M and N be two 3×3 matrices which that MN=NM. Further if M=N2 and M2=N4, show that
i) det(M2+MN2)=0
ii) There is a 3×3 nonzero matrix U which that (M2+MN2)U is zero matrix.
MN=NMMN2=NMNMN2=NNM=N2MMN2=N2M
Take
M2=N4
⇒⇒⇒⇒M2−N4=0M2−MN2+MN2−N4=0M(M−N2)+N2M−N4=0M(M−N2)+N2(M−N2)=0
(M+N2)(M−N2)=0
Case I det(M+N2)=0
⇒det(M2+MN2) =det(M(M+N2))
=detM⋅det(M+N2)=0
Case II
Case II det(M+N2)=0
⇒(M+N2)−1 exists.
⇒(M+N2)−1(M+N2)(M−N2)=0
⇒M−N2=0⇒which is not possible.
⇒ Case II cannot occur.
⇒det(M2+MN2)=0
ii) Need to show (M2+MN2)U=0→ zero matrix for some non - zero matrix U
from (1) (M+N2)(M−N2)=0
⇒M(M+N2)(M−N2)=0⇒(M2+MN2)(M−N2)=0
U=M−N2=0⇒(M2+MN2)U=0
Let
M=01312ba31
adj M=−18−51−63−12−1, where a and b are real number
Then, show that
i) a+b=3
ii) (adjM)−1+adjM−1=−M
iii) if Mαβγ=123, then α−β+γ=3.
i) M=01312ba31
(1,1) co-factor of M=2331 =2−3b
⇒2−3b=−1 ⇒3b=3 →b=1
(3,1) co-factor of M=12a3 =3−2a
⇒3−2a=−1⇒2a=4⇒a=2
ii) (adjM)−1+adjM−1=−M
M=013121231
detM=−1(1−9)+2(1−6)=8−10=−2
det(adjM)=(detM)2=4=0
⇒(adjM)−1+adjM−1=−M
iii) If Mαβγ=123, then
α−β+γ=3
detM=−2,M−1=detMadjM M−1=1/2−45/2−1/23−3/21/2−11/2
let x∈R and let
P=100120123,∑=20xx4xx06 & R=P & P−1, then show that
i) detR=det20xx4xx05+8
ii) For x=0, if R1ab=61ab, then a+b=5.
R=PQP−1
detR=detPdetQ⋅detP−1
=detPdet2detP1
=detQ
detR=det20xx4xx+00+05+1=det20xx4xx05+det20xx4x001
detR=det20xx4xx05+8
ii) If x=0
R=PQP−1Q=200040006P=100120123,P−1=100−1/21/200−1/31/3
detP=6
a+32b=42a−34b=0⟩→4a=8a=2b=3
R1ab=61ab2+a+32b=64a+4/3b=6a6b=6ba+b=2+3=5