- let $x \in \mathbb{R}$ and let
- $P=\left[\begin{array}{lll}1 & 1 & 1 \\\0 & 2 & 2 \\\0 & 0 & 3\end{array}\right], \sum=\left[\begin{array}{lll}2 & x & x \\\0 & 4 & 0 \\\x & x & 6\end{array}\right]$ & $\quad R=P$ & $P^{-1}$, then show that
- i) $\operatorname{det} R=\operatorname{det}\left[\begin{array}{lll}2 & x & x \\\ 0 & 4 & 0 \\\ x & x & 5\end{array}\right]+8$
- ii) For $x=0$, if $R\left[\begin{array}{c}1 \\\ a \\\ b\end{array}\right]=6\left[\begin{array}{l}1 \\\ a \\\ b\end{array}\right]$, then $a+b=5$.
![image]( /subject-images/iitpal/image/mathematics-class-12-unit-03-chapter-09-matrix-and-determinant-l-3-5-pwvqcvyz6em-22.jpg)