- Let,
- $
P=\left[\begin{array}{ccc}
3 & -1 & -2 \\\\
2 & 0 & \alpha \\\\
3 & -5 & 0
\end{array}\right], \quad \alpha \in \mathbb{R.}
$
- Suppose $Q=\left[q_ {i j}\right]$ is a matrix such that $P Q=k I$, when $k \in R, k \neq 0$ and $I$ is a $3 \times 3$ identity matrix. If $q_{23}=-\frac{k}{8}$ and $\operatorname{det}Q=\frac{k^2}{2}$, then show that
- a) $\operatorname{det}(P$ adj $Q)=2^9 \qquad$
- b) $4 \alpha-k+8=0$