Solution:
For an n×n matrix A det(adjA)=(detA)n−1
we have,
adj P=121411473
det(adjP)=1(3−7)−4(6−7)+4(2−1)=−4+4+4=4
Given n=3
det(adjP)=(detP)2⇒(detP)2=4,1⇒detP=±2
For 3×3 matrices M and N, show that
i) N⊤MN is symmetric or skew-symmetic according as M is symmetric or skew-symmetric.
ii) MN−NM is skew-symmetric for all symmetric matrices M and N.
(N⊤MN)⊤
=(N⊤MN)⊤
=(MN)⊤(N⊤)⊤
=N⊤M⊤N=N⊤MN
⇒N⊤MN is a symmetric matrix.
Let M be a skew -symmetric ⇒M⊤=−M
(N⊤MN)⊤=N⊤M⊤N=−N⊤MN
⇒N⊤MN is a skew-symmetric matrix.
ii) Let, M and N be symmetric matrices.
⇒M⊤=M,N⊤=N
(MN−NM)⊤=(MN)⊤−(NM)⊤=N⊤M⊤−M⊤N⊤=NM−MN=−(MN−NM)
Then, show that
a) Y3Z4−Z4Y3 is a symmetric matrix
b) X44+Y44 is a symmetric matrix
c) X4Z3−Z3X4 is a skew -symmetric matrix
d) X23+Y23 is a skew-symmetric matrix.
(Xn)⊤=(X⋅X⋅⋅⋅X)n times⊤
=(X⊤⋅X⊤⋅⋯X⊤)
=(X⊤)n=(−X)n
(Xn)⊤=(−1)nXn
(Xn)T={Xn−Xnn evenn odd,
(Yn)T={Yn−Ynn evenn odd,
(b) (X44+Y44)⊤=(X44)⊤+(Y44)⊤
=X44+Y44 ⇒X44+Y44 is a symmetric matrix.
(c)
(X4Z3−Z3X4)⊤
=(X4Z3)⊤−(Z3X4)⊤
=(Z3)⊤(X4)⊤−(X4)⊤(Z3)⊤
=Z3(−X)4−(−X)4Z3
=−(X4Z3−Z3X4)⇒X4Z3−Z3X4 is a skew-symmetric .
(d)
(X23+Y23)⊤=(X23)⊤+(Y23)⊤=−X23−Y23=−(X23+Y23)
⇒X23+Y23 is a skew-symmetric matrix.
A=2k−12k−2k2k12k2k−2k−1
B=01−2k−k2k−10−2kk2k0
detA=2k−12k−2k2k12k2k−2k−1
=(2k−1)(−1+4k2)−2k(−2k−4kk)+2k(4kk+2k)
=1−2k+8k3−4k2+4k+8k2+8k2+4k
=8k3+12k2+6k+1
∵⇒k>0⇒detA>0
detB=01−2k−k2k−10−2kk2k0
=0−(2k−1)(2k)+k(−2k+4kk)=−4k2+2k−2k+4k2=0⇒detB=0
det(adjA)+det(adjB)=106
(detA)2+(detB)2=106
(detA)2=106
⇒detA=103
8k3+12k2+6k+1=1000
⇒8k3+12k2+6k−999=0
p(k)=8k3+12k2+6k−999
Let,
P=323−10−5−2α0,α∈R.
Suppose Q=[qij] is a matrix such that PQ=kI, when k∈R,k=0 and I is a 3×3 identity matrix. If q23=−8k and detQ=2k2, then show that
a) det(P adj Q)=29
b) 4α−k+8=0
It is given that
PQ=k⋅I
det(PQ)=det(k⋅I)
=k3detI
=k3=0∵k=0
PQ=kI
⇒Q=k⋅P−1
=k⋅detPadjP
adjP=5α3α−1010612−α−(3α+4)2
Q=12α+20k5α3α−1010612−α−(3α+4)2
∵q23=−8k⇒−12α+20(3α+4)k=−8k
Given k=0, we have, 12α+20(3α+4)=81
24α+32=12α+20⇒12α=−12⇒α=−1
detQ=2k2
⇒12α+20k3=2k2⇒2k=12(−1)+20⇒2k=8,⇒k=4
(b)4α−k+8 =
4(−1)−4+8=0
a) det(P⋅adjQ)
=detP⋅det(adjQ)=(12α+20)×(detQ)2
=(12α+20)(12α+20k3)2
=12α+20k6=846=23212=29
det(P⋅adjQ)=29