Problem:
Let P be an invertible matrix with I+p+p2+…+pn=0 (i.e, the zero matrix).
Find P−1 in terms of P.
Solution:
I+P+p2+⋯+Pn=0.
Multiply this equation by
p−1.
p−1+I+p+⋯+pn−1=0
⇒p−1=−I−p−⋯+pn−1=−∑0n−1pi.
Problem:
If A=15−222−116−3, find A3.
Solution:
A=15−222−116−3 A2=15−222−116−315−222−116−3
A3=A2⋅A=93−1510−310−1115−222−116−3=9+25−203+50+2−1+15−218+10−206+20+1−2−6−19+30−303+60+3−1+18−3 =1455−18829−996614
Problem:
The set of natural numbers is partitioned into arrays of rows & column in the form of matrices an M1=[1],M2=[2435],M3=6913110 is 111114 and so on. Find the trace of Mn.
Solution:
{1,2,6,15,…,tn…}
∴ Let Sn=1+2+6+15+⋯+tn
∴0=Sn−Sn
=(1+2+6+15+⋯+tn)−(1+2+6+15+⋯+tn)
=1+(2−1)+(6−2)+(15−6)+⋯+(tn−1−tn−2)
+(tn−tn−1)+tn
0=1+12+22+32+⋯+(tn−tn−1)−tn∴tn=1+12+22+32+⋯+(tn−tn−1)=1+i=1∑n−1i2=1+6n(n−1)(2n−1).
Let " a11 denote the 1st element of Mn.
Then a11=1+6n(n−1)(2n−1)
aii=1+6n(n−1)(2n−1)+(i−1)(n+1),1⩽i⩽n.
∴trace(Mn)
=i=1∑naii=i=1∑n[61+n(n−1)(2n−1)+(i−1)(n+1)]=i=1∑n(1+6n(n−1)(2n−1))+i=1∑n(i−1)(n+1)
=n[1+6n(n−1)(2n−1)]+(n+1)∑i=1ni=1
A=n[1+6n(n−1)(2n−1)]+(n+1)∑i=1ni
=n[1+6n(n−1)(2n−1)]+6(n+1)2(n−1)n=6n[6+2n3−3n2+n+3n2−30]=6n[2n3+2n+6]∴tr(Mn)=6n(2n3+n+3).
Problem:
If A=[2i−1+i3 2i1+i32i−1−i52i1−i3] & f(x)=x2+1,
then, find f(A).
Solution:
f(x)=x2+1
∴f(A)=A2+I
A2=[2i−1+i32i1+i32i−1−i32i1−i5][2i−1+i32i1+i32i−1−i52i1−i3]
=4−1[−1+i51+i5−1−i51−i5][−1+i51+i3−1−i51−i3]=4−1[(−1+i3)2−(1+i3)2−3−1+1+31+3+1+3−(1+i3)2+(1−i3)2]
=−41[1−2i3−3−1−2i3+300−1−2i3−3+1−2i3−3]
=−41[−4i300−4i3]=[i300i3]
Problem:
If A=2−11−23−2−44x is an idempotent matrix, then find the value of x.
A square matrix A which satifies A2=A is called an idempotent matrix.
A2=2−11−23−2−44x2−11−23−2−44x=4+2−4−2−3+42+2+x−4−6+22+9−8−2−6−2x−8−8−4x4+12+4x−4−8+x2
=2−14+x−23−8−2x−16−4x16+4x−12+x2
A2=A i.e., 2−14+x−23−8−2x−16−4x16+4x−12+x2
=2−11−23−2−44x
Suppose a matrix A satisfies A2−5A+7I=0. If A5=aA+bI, then find the value of a and b.
Solution:
Given A2−5A+7I=0
⇒A2=5A−7I.
A3=A2⋅A
=(5A−7I),A
=5A2−7A=5(5A−7x)−7A
=18A−7I.
A5=A3⋅A2=(18A−7I)(5A−7I)=90A2−126A−35A+49I=90(5A−7I)−161A+49I=450A−630I−161A+49I=289A−54I⟶ (1)
Also, we are given that A5=aA+bI→ (2)
Comparing (1) & (2), we get
a=289, b=−581
Problem:
A=[α101] & A2=I then find α
Solution:
A2A2α2⇒α=[α101][α101]=[α2α+101]=I i.e., [α2α+101]=[1001]=1α+1=0=−1.
If A=[α203] & A2=9I, then find α.
Solution.
A2=[α203][α203]=[α22α+609]
A2=9I i.e., [α22α+609]=[9009]
⇒α2=9⇒2α+6=0⇒α=−3
If xxxxxxxxxyyyyyyyyy=31111111111
then show that x=1/9y.
xxxxxxxxxyyyyyyyyy=1/31/31/31/31/31/31/31/61/3
xxxxxxxxxyyyyyyyyy=3xy3xy3xy3xy3xy3xy3xy3xy3xy3xy=1/3⇒xy=1/9 or x=1/9y.
If the equations, x−2y+3z−2x+2y+2z−8x+λy=0=0=0
Solution: 1−2−8−23λ320R2→R2+2R1100−2−1λ−163124
R2→−R2100−21λ−163−124R1→R1+2R2100010−13−824+(16−λ)(−2)R3→R3+(16−λ)R2100010−13−8λ−104
For the existence of a non-trivial solution, 8λ−104 should be equal to 0.
∴8λ−104=0⇒λ=104/8=13.
Thus λ=13, is the only value for which the given system will have a non-trivial solution.