- Problem:
- If $A=\left[\begin{array}{cc}\frac{-1+i \sqrt{3}}{2 i} & \frac{-1-i \sqrt{5}}{2 i} \\\\\\ \frac{1+i \sqrt{3}}{2 i} & \frac{1-i \sqrt{3}}{2 i}\end{array}\right]$ & $f(x)=x^2+1$,
- then, find $f(A)$.
- Solution:
- $f(x)=x^2+1$
- $\therefore \quad f(A)=A^2+I$
- $ A^2=\left[\begin{array}{cc}
\frac{-1+i \sqrt{3}}{2 i} & \frac{-1-i \sqrt{3}}{2 i} \\\\
\frac{1+i \sqrt{3}}{2 i} & \frac{1-i \sqrt{5}}{2 i}
\end{array}\right]\left[\begin{array}{cc}
\frac{-1+i \sqrt{3}}{2 i} & \frac{-1-i \sqrt{5}}{2 i} \\\\
\frac{1+i \sqrt{3}}{2 i} & \frac{1-i \sqrt{3}}{2 i}
\end{array}\right]
$