Three possibilities that arise:
1) No solution.
2) Unique solution.
3) Multiple solution.
−3x−2y+4y=9
3y−2z=5
4x−3y+2z=7
−304−23−34−22xyz=957
x=3y=7z=8
(3,7,8)
This is the solution of the given system.
Ax=B be the given system of linear equations
Let ρ be the elementary row operations that one performed on A & B. Let A~ denote ρ(A) & B~ denote ρ(B).
A~x=B~ - the newly obtained system.
A is row equivalent to A~ &
B is now equivalent to B~
i.e., A is obtained from A just by applying the row elementary operations.
The systems,
Ax=B & A~x=B~
have the same set of solutions.
If ρ is an elementary row operation then ρ(A)=ρ(I)A.
Let, ρ1,ρ2,…,ρs be a finite set of elementary row operations. Let, A be an n×n matrix.
Then,
a) (ρs∘ρs−1∘ρs−3∘⋯∘ρ2∘ρ1) (A)
=(ρs∘ρs−1⋅⋯∘ρ2∘ρs)(I)(A)
b) (ρs∘ρs−1∘⋯∘ρ2∘ρ1)(A)
=ρs(I)ρs−1(I)⋯ρ2(I)ρ1(I)A
c) If ρ is an elementary row operation & if A & B are any two matrices which can be multiplied, then
ρ(AB)=ρ(A)⋅B
ρ(AB)=ρ(I)(AB)
=(ρ(I)A)(B)
=ρ(A)(B).
∴ If ρs,ρs−1,….ρ2,ρ1 is a finite set of elementary row operations then
(ρs∘ρs−1∘ρs−2∘⋯∘ρ2∘ρ1)(AB)
=(ρs⋅ρs−1⋅ρs−2∘⋯∘ρ2∘ρ1)(A)B.
AX=B is the given system.
Suppose, x is the solution to the system, then ρ(Ax)=ρ(B)
where, ρ is any elementary row operation.
ρ(A)x=ρ(B)
A~x=D~
2x−3y=−21
3x+2y=1
8x−5y=−49
This is an over determined system
238−32−5[xy]=−211−49
238−32−5−211−49
R1→21R1138−232−5−2211−49
R2→R2−3R1R3→R3−3R1100−232+29−5+224−2211+263−49+2162
=100−23312214−22126535
R2→132R2100−231214−221535
R1→23R2+R1R3→2−14R2+R3100010215−221535−35
=100010−350
x=−3,y=5
Solve the system:
2x−3y+2z=13
3x+y−z=2
3x−4y−3z=1
R1→R1+23R2, R3→R3−21R2
1000101−1112−118−6+114213+−11105−1135−237+2235
100010−111−118−11622238−1135−22372
R3→62−11R3100010−111−11812238−31153
R1⟶R1+111R3,R2⟶R2+118R3
1000100012238+113−1136+11243
=1000100012−13
(2,−1,3)