$
\begin{aligned}
& \begin{array}{l}
R_2 \longrightarrow R_2+(-4) R_1 \\
R_3 \rightarrow R_3+(-2) R_1
\end{array}\left[\begin{array}{ll}
1 & \frac{3}{2} \\
0 & -1 \\
0 & -2
\end{array}\right] \\
& R_2 \rightarrow R_2-(-1) R_2\left[\begin{array}{cc}
1 & \frac{3}{2} \\
0 & 1 \\
0 & -2
\end{array}\right] \\
& \begin{array}{l}
R_1 \rightarrow R_1+(\frac{-3}{2}) R_2 \\
R_3 \longrightarrow R_3+(2) R_2
\end{array}\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] \\
&
\end{aligned}
$
- The number of zero rows in this RRE matrix is 2 $\therefore \operatorname{Rank}(A)=2$.