Matrices L-3
Matrix lecture-3
→ \rightarrow → → \rightarrow → Matrix lecture-3 → \rightarrow → Associativity of matrix multiplication → \rightarrow → Associativity of matrix multiplication proof
Matrices L-3
Associativity of matrix multiplication
Matrix multiplication is associative, i.e. for any 3 matrices A , B A, B A , B & C C C such that A A A & B B B are compatible for multiplying and B & C are compatible for multiplying, then
A ⋅ ( B ⋅ C ) = ( A ⋅ B ) ⋅ C A \cdot(B \cdot C)= (A \cdot B) \cdot C A ⋅ ( B ⋅ C ) = ( A ⋅ B ) ⋅ C
Let, A A A be a n × m n \times m n × m matrix
B B B be a m × r m \times r m × r matrix
& C C C be a r × s r \times s r × s matrix
(This is possible because of the given hypothesis)
→ \rightarrow → Matrix lecture-3 → \rightarrow → Associativity of matrix multiplication → \rightarrow → Associativity of matrix multiplication proof → \rightarrow → Associativity of matrix multiplication proof contd...
Matrices L-3
Associativity of matrix multiplication proof
Let, A = [ a i j ] , 1 ⩽ i ⩽ n A=\left[a_{i j}\right], {1\leqslant i \leqslant n} A = [ a ij ] , 1 ⩽ i ⩽ n , ~ 1 ⩽ j ⩽ m {1\leqslant j \leqslant m} 1 ⩽ j ⩽ m
B = [ b i j ] , 1 ⩽ i ⩽ m B=\left[b_{i j}\right], {1\leqslant i \leqslant m} B = [ b ij ] , 1 ⩽ i ⩽ m , ~ 1 ⩽ j ⩽ r {1\leqslant j \leqslant r} 1 ⩽ j ⩽ r
C = [ c i j ] , 1 ⩽ i ⩽ r C=\left[c_{i j}\right], {1\leqslant i \leqslant r} C = [ c ij ] , 1 ⩽ i ⩽ r , ~ 1 ⩽ j ⩽ s {1\leqslant j \leqslant s} 1 ⩽ j ⩽ s
Matrix lecture-3 → \rightarrow → Associativity of matrix multiplication → \rightarrow → Associativity of matrix multiplication proof → \rightarrow → Associativity of matrix multiplication proof contd... → \rightarrow → Associativity of matrix multiplication proof contd...
Matrices L-3
Associativity of matrix multiplication proof contd…
A ⋅ ( B ⋅ C ) = A ⋅ ( [ b i j ] ⋅ [ c i j ] ) A \cdot(B \cdot C) =A \cdot\left(\left[b_{i j}\right] \cdot\left[c_{i j}\right]\right) A ⋅ ( B ⋅ C ) = A ⋅ ( [ b ij ] ⋅ [ c ij ] )
=A ⋅ ( [ ∑ k = 1 r b i k c k j ] ) A \cdot\left(\left[\sum_{k=1}^r b_{i k} c_{k j}\right]\right) A ⋅ ( [ ∑ k = 1 r b ik c kj ] )
= [ a i j ] ( [ ∑ k = 1 r b i k c k j ] ) =\left[a_{i j}\right]\left(\left[\sum_{k=1}^r b_{i k} c_{k j}\right]\right) = [ a ij ] ( [ ∑ k = 1 r b ik c kj ] )
Associativity of matrix multiplication → \rightarrow → Associativity of matrix multiplication proof → \rightarrow → Associativity of matrix multiplication proof contd... → \rightarrow → Associativity of matrix multiplication proof contd... → \rightarrow → Associativity of matrix multiplication proof contd...
Matrices L-3
Associativity of matrix multiplication proof contd...
= [ ∑ t = 1 m a i t d t j ] =\left[\sum_{t=1}^m a_{i t} d_{t j}\right] = [ ∑ t = 1 m a i t d t j ]
where d t j is the ( t , j ) t h \text { where } d_{t j} \text { is the }(t, j)^{th} where d t j is the ( t , j ) t h entry in the matrix B ⋅ C B \cdot C B ⋅ C
= [ ∑ t = 1 m a i t ∑ k = 1 r b t k c k j ] =\left[\sum_{t=1}^m a_{i t} \sum_{k=1}^r b_{t k} c_{k j}\right] = [ ∑ t = 1 m a i t ∑ k = 1 r b t k c kj ]
= [ ∑ t = 1 m ∑ k = 1 r a i t b t k c k j ] =\left[\sum_{t=1}^m \sum_{k=1}^r a_{i t} b_{t k} c_{k j}\right] = [ ∑ t = 1 m ∑ k = 1 r a i t b t k c kj ]
( A ⋅ B ) ⋅ C = ( [ a i j ] [ b i j ] ) ⋅ C (A \cdot B) \cdot C=\left(\left[a_{i j}\right]\left[b_{i j}\right]\right) \cdot C ( A ⋅ B ) ⋅ C = ( [ a ij ] [ b ij ] ) ⋅ C
= ( [ ∑ k = 1 m a i k b k j ] ) =\left(\left[\sum_{k=1}^m a_{i k} b_{k j}\right]\right) = ( [ ∑ k = 1 m a ik b kj ] )
Associativity of matrix multiplication proof → \rightarrow → Associativity of matrix multiplication proof contd... → \rightarrow → Associativity of matrix multiplication proof contd... → \rightarrow → Associativity of matrix multiplication proof contd... → \rightarrow → Non-commutativity of matrix multiplication
Matrices L-3
Associativity of matrix multiplication proof contd...
= ( [ ∑ k = 1 m a i k b k j ] ) ⋅ [ c i j ] =\left(\left[\sum_{k=1}^m a_{i k} b_{k j}\right]\right) \cdot\left[c_{i j}\right] = ( [ ∑ k = 1 m a ik b kj ] ) ⋅ [ c ij ]
= [ ( ∑ t = 1 r ∑ k = 1 m a i k b k t ) ⋅ c t j ] =\left[\left(\sum_{t=1}^r \sum_{k=1}^m a_{i k} b_{k t}\right) \cdot c_{t j}\right] = [ ( ∑ t = 1 r ∑ k = 1 m a ik b k t ) ⋅ c t j ]
= [ ∑ t = 1 r ∑ k = 1 m a i k b k t c t j ] =\left[\sum_{t=1}^r \sum_{k=1}^m a_{i k} b_{k t} c_{t j}\right] = [ ∑ t = 1 r ∑ k = 1 m a ik b k t c t j ]
= [ ∑ k = 1 r ∑ t = 1 m a i t b t k c k j ] = A ⋅ ( B ⋅ C ) =\left[\sum_{k=1}^r \sum_{t=1}^m a_{i t} b_{t k} c_{k j}\right]=A \cdot(B \cdot C) = [ ∑ k = 1 r ∑ t = 1 m a i t b t k c kj ] = A ⋅ ( B ⋅ C )
Associativity of matrix multiplication proof → \rightarrow → Associativity of matrix multiplication proof contd... → \rightarrow → Associativity of matrix multiplication proof contd... → \rightarrow → Non-commutativity of matrix multiplication → \rightarrow → Non-commutativity of matrix multiplication contd...
Matrices L-3
Non-commutativity of matrix multiplication
Example-1
Let, A = [ 1 − 2 3 − 4 2 5 ] A=\left[\begin{array}{ccc}1 & -2 & 3 \\ -4 & 2 & 5\end{array}\right] A = [ 1 − 4 − 2 2 3 5 ] &
B = [ 2 3 4 5 2 1 ] B=\left[\begin{array}{ll}2 &3 \\ 4 & 5 \\ 2 & 1\end{array}\right] B = 2 4 2 3 5 1
A B = [ 1 − 2 3 − 4 2 5 ] A B=\left[\begin{array}{ccc}1 & -2 & 3 \\ -4 & 2 & 5\end{array}\right] A B = [ 1 − 4 − 2 2 3 5 ] [ 2 3 4 5 2 1 ] \left[\begin{array}{ll}2 & 3 \\ 4 & 5 \\ 2 &1\end{array}\right] 2 4 2 3 5 1
= [ 2 − 8 + 6 3 − 10 + 3 − 8 + 8 + 10 − 12 + 10 + 5 ] = [ 0 − 4 10 3 ] =\left[\begin{array}{cc}2-8+6 & 3-10+3 \\ -8+8+10 & -12+10+5\end{array}\right]=\left[\begin{array}{cc}0 & -4 \\ 10 & 3\end{array}\right] = [ 2 − 8 + 6 − 8 + 8 + 10 3 − 10 + 3 − 12 + 10 + 5 ] = [ 0 10 − 4 3 ]
Associativity of matrix multiplication proof contd... → \rightarrow → Associativity of matrix multiplication proof contd... → \rightarrow → Non-commutativity of matrix multiplication → \rightarrow → Non-commutativity of matrix multiplication contd... → \rightarrow → Non-commutativity of matrix multiplication
Matrices L-3
Non-commutativity of matrix multiplication contd...
B A = [ 2 3 4 5 2 1 ] [ 1 − 2 2 4 2 5 ] = [ 2 − 12 − 4 + 6 6 + 15 4 − 20 − 8 + 10 12 + 25 2 − 4 − 4 + 2 6 + 5 ] = [ 10 2 21 16 2 37 2 − 2 11 ] \begin{aligned}
& B A=\left[\begin{array}{ll}
2 & 3 \\
4 & 5 \\
2 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & 2 \\
4 & 2 & 5
\end{array}\right] \\
& =\left[\begin{array}{llll}
2 - 12 & -4+6 & 6+15 \\
4 - 20 & -8+10 & 12+25 \\
2 - 4 & -4+2 & 6+5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
10 & 2 & 21 \\
16 & 2 & 37 \\
2 & -2 & 11
\end{array}\right] \end{aligned} B A = 2 4 2 3 5 1 [ 1 4 − 2 2 2 5 ] = 2 − 12 4 − 20 2 − 4 − 4 + 6 − 8 + 10 − 4 + 2 6 + 15 12 + 25 6 + 5 = 10 16 2 2 2 − 2 21 37 11
A B A ~ B A B is a matrix of order 2 × 2 , B A 2 \times 2, ~ B ~ A 2 × 2 , B A is a matrix of order 3 × 2 3 \times 2 3 × 2
⇒ A B ≠ B A . \Rightarrow A B \neq B A \text {. } ⇒ A B = B A .
Associativity of matrix multiplication proof contd... → \rightarrow → Non-commutativity of matrix multiplication → \rightarrow → Non-commutativity of matrix multiplication contd... → \rightarrow → Non-commutativity of matrix multiplication → \rightarrow → Non-commutativity of matrix multiplication contd...
Matrices L-3
Non-commutativity of matrix multiplication
Let, A = [ 1 2 3 4 ] A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] A = [ 1 3 2 4 ] & B = [ 5 6 7 8 ] B=\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right] B = [ 5 7 6 8 ]
A B = [ 1 2 3 4 ] [ 5 6 7 8 ] = [ 5 + 14 6 + 16 15 + 28 18 + 32 ] = [ 19 22 43 50 ] \begin{aligned} A B & =\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right] \\ & =\left[\begin{array}{ll}5+14 & 6+16 \\ 15+28 & 18+32\end{array}\right] \\ & =\left[\begin{array}{ll}19 & 22 \\ 43 & 50\end{array}\right]\end{aligned} A B = [ 1 3 2 4 ] [ 5 7 6 8 ] = [ 5 + 14 15 + 28 6 + 16 18 + 32 ] = [ 19 43 22 50 ]
Non-commutativity of matrix multiplication → \rightarrow → Non-commutativity of matrix multiplication contd... → \rightarrow → Non-commutativity of matrix multiplication → \rightarrow → Non-commutativity of matrix multiplication contd... → \rightarrow → Zero matrix
Matrices L-3
Non-commutativity of matrix multiplication contd...
B A = [ 5 6 7 8 ] [ 1 2 3 4 ] B A =\left[\begin{array}{ll}5 & 6 \\7 & 8\end{array}\right]\left[\begin{array}{ll}1 & 2 \\3 & 4\end{array}\right] B A = [ 5 7 6 8 ] [ 1 3 2 4 ]
= [ 5 + 18 10 + 24 7 + 24 14 + 32 ] =\left[\begin{array}{ll}5+18 & 10+24 \\7+24 & 14+32\end{array}\right] = [ 5 + 18 7 + 24 10 + 24 14 + 32 ]
= [ 23 34 31 46 ] =\left[\begin{array}{ll}23 & 34 \\31 & 46\end{array}\right] = [ 23 31 34 46 ]
Thus, A B = [ 19 32 43 50 ] ≠ [ 23 34 31 46 ] = B A A B=\left[\begin{array}{ll}19 & 32 \\ 43 & 50\end{array}\right] \neq\left[\begin{array}{ll}23 & 34 \\ 31 & 46\end{array}\right]=B A A B = [ 19 43 32 50 ] = [ 23 31 34 46 ] = B A
∴ A B ≠ B A \therefore A B \neq B A ∴ A B = B A
Non-commutativity of matrix multiplication contd... → \rightarrow → Non-commutativity of matrix multiplication → \rightarrow → Non-commutativity of matrix multiplication contd... → \rightarrow → Zero matrix → \rightarrow → Row reduced echelon form
Matrices L-3
Zero matrix
If α \alpha α & β \beta β are any two scalars such that α ⋅ β = 0 \alpha \cdot \beta=0 α ⋅ β = 0 , then either α = 0 \alpha=0 α = 0 or β = 0 \beta=0 β = 0 .
A = [ 0 − 1 0 2 ] A=\left[\begin{array}{cc}
0 & -1 \\
0 & 2
\end{array}\right] A = [ 0 0 − 1 2 ] and B = [ 3 5 0 0 ] B=\left[\begin{array}{ll}
3 & 5 \\
0 & 0
\end{array}\right] B = [ 3 0 5 0 ]
A B = [ 0 − 1 0 2 ] A B=\left[\begin{array}{cc}
0 & -1 \\
0 & 2
\end{array}\right] A B = [ 0 0 − 1 2 ]
[ 3 5 0 0 ] \left[\begin{array}{ll}
3 & 5 \\
0 & 0
\end{array}\right] [ 3 0 5 0 ] = [ 0 + 0 0 + 0 0 + 0 0 + 0 ] =\left[\begin{array}{cc}
0+0 & 0+0 \\
0+0 & 0+0
\end{array}\right] = [ 0 + 0 0 + 0 0 + 0 0 + 0 ]
= [ 0 0 0 0 ] the zero matrix. =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \text { the zero matrix. } = [ 0 0 0 0 ] the zero matrix.
Non-commutativity of matrix multiplication → \rightarrow → Non-commutativity of matrix multiplication contd... → \rightarrow → Zero matrix → \rightarrow → Row reduced echelon form → \rightarrow → Row reduced echelon form contd...
Matrices L-3
Definition :- A matrix is called row reduced echelon if the following properties hold:
i) Every zero row is below every non-zero row.
ii) The Leading coefficient (first non-zero coefficient) of every row is 1 .
iii) A column which contains the leading coefficient of A, now has all the other coefficients equal to zero.
Non-commutativity of matrix multiplication contd... → \rightarrow → Zero matrix → \rightarrow → Row reduced echelon form → \rightarrow → Row reduced echelon form contd... → \rightarrow → Row reduced echelon form example-1
Matrices L-3
iv) Suppose the matrix has r r r non-zero rows. If the leading non-zero entry of the i th i^{\text {th }} i th row occurs in the k i t h k_i^{th} k i t h
column, then
k 1 k_1 k 1 < k 2 k_2 k 2 < . . . < k r k_r k r .
Zero matrix → \rightarrow → Row reduced echelon form → \rightarrow → Row reduced echelon form contd... → \rightarrow → Row reduced echelon form example-1 → \rightarrow → Row reduced echelon form example-2,3
Matrices L-3
( 1 0 2 0 0 0 0 1 0 ) \left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right) 1 0 0 0 0 1 2 0 0
The second row is above a non-zero row & hence not a row-reduced echelon matrix.
Row reduced echelon form → \rightarrow → Row reduced echelon form contd... → \rightarrow → Row reduced echelon form example-1 → \rightarrow → Row reduced echelon form example-2,3 → \rightarrow → Row reduced echelon form example-4
Matrices L-3
( 1 0 1 0 2 0 0 0 0 ) \left(\begin{array}{lll}\ 1 & 0 & 1 \\ 0 & \ 2 & 0 \\ 0 & 0 & 0\end{array}\right) 1 0 0 0 2 0 1 0 0
The first non-zero coefficient in the second row is 2 & hence not a row reduced echelon matrix.
( 1 1 2 0 1 1 0 0 0 ) \left(\begin{array}{lll}\ 1 & 1 & 2 \\ 0 & \ 1 & 1 \\ 0 & 0 & 0\end{array}\right) 1 0 0 1 1 0 2 1 0
Hence, this is not a row reduced echelon matrix.
Row reduced echelon form contd... → \rightarrow → Row reduced echelon form example-1 → \rightarrow → Row reduced echelon form example-2,3 → \rightarrow → Row reduced echelon form example-4 → \rightarrow → Row reduced echelon form example-5
Matrices L-3
Row reduced echelon form example-1 → \rightarrow → Row reduced echelon form example-2,3 → \rightarrow → Row reduced echelon form example-4 → \rightarrow → Row reduced echelon form example-5 → \rightarrow → Row elementary operations scalar multiplication
Matrices L-3
5) ( 1 0 2 0 1 3 0 0 0 ) \left(\begin{array}{lll}\ 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right) 1 0 0 0 1 0 2 3 0
The zero row, the third row is below all the non-zero rows.
The leading coefficients in both 1 st 1^{\text {st }} 1 st & 2nd rows are just 1.
All the other elements in a column containing a leading coefficient are zero
k 1 = 1 k 2 = 2 k 1 < k 2 k_1=1 \quad k_2=2 \quad k_1<k_2 k 1 = 1 k 2 = 2 k 1 < k 2
Thus, this matrix is a row reduced echelon matrix.
Row reduced echelon form example-2,3 → \rightarrow → Row reduced echelon form example-4 → \rightarrow → Row reduced echelon form example-5 → \rightarrow → Row elementary operations scalar multiplication → \rightarrow → Row elementary operations row interchange
Matrices L-3
Row elementary operations scalar multiplication
Given a matrix A A A , is there any procedure to convert it into a row reduced echelon matrix?
Row elementary operations.
1) Multiplying the i th i^{\text {th }} i th row by a non-zero scalar
say λ . R i → λ R i \lambda . \quad R_i \rightarrow \lambda R_i λ . R i → λ R i .
Example: ( 1 2 3 4 5 6 ) R 1 → 2 R 1 ( 2 4 6 4 5 6 ) \left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right) R_1 \rightarrow 2 R_1\left(\begin{array}{lll}2 & 4 & 6 \\ 4 & 5 & 6\end{array}\right) ( 1 4 2 5 3 6 ) R 1 → 2 R 1 ( 2 4 4 5 6 6 ) .
Row reduced echelon form example-4 → \rightarrow → Row reduced echelon form example-5 → \rightarrow → Row elementary operations scalar multiplication → \rightarrow → Row elementary operations row interchange → \rightarrow → Row elementary operations replacement by operations
Matrices L-3
Row elementary operations row interchange
Interchanging i th i^{\text {th }} i th row & j th j^{\text {th }} j th now.
R i ⟷ R j R_i \longleftrightarrow R_j R i ⟷ R j
Eg. ( 0 1 2 1 0 3 0 0 0 ) R 1 ⟷ R 2 ( 1 0 3 0 1 2 0 0 0 ) \left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 3 \\ 0 & 0 & 0\end{array}\right) R_1 \longleftrightarrow R_2\left(\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right) 0 1 0 1 0 0 2 3 0 R 1 ⟷ R 2 1 0 0 0 1 0 3 2 0 .
Row reduced echelon form example-5 → \rightarrow → Row elementary operations scalar multiplication → \rightarrow → Row elementary operations row interchange → \rightarrow → Row elementary operations replacement by operations → \rightarrow → Procedure to obtain a row reduced echelon matrix from a given matrix
Matrices L-3
Row elementary operations replacement by operations
Replace the i th i^{\text {th }} i th row by the sum of i th i^{\text {th }} i th row & μ \mu μ -multiple of j th j^{\text {th }} j th now.
R i ⟶ R i + μ R j . R_i \longrightarrow R_i+\mu R_j \text {. } R i ⟶ R i + μ R j .
Example: ( 1 2 0 0 0 0 1 3 ) R 1 → R 1 + 2 R 2 ( 1 2 2 6 0 0 1 3 ) \left(\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 3\end{array}\right) R_1 \rightarrow R_1+2 R_2\left(\begin{array}{llll}1 & 2 & 2 & 6 \\ 0 & 0 & 1 & 3\end{array}\right) ( 1 0 2 0 0 1 0 3 ) R 1 → R 1 + 2 R 2 ( 1 0 2 0 2 1 6 3 )
Row elementary operations scalar multiplication → \rightarrow → Row elementary operations row interchange → \rightarrow → Row elementary operations replacement by operations → \rightarrow → Procedure to obtain a row reduced echelon matrix from a given matrix → \rightarrow → Procedure to obtain a row reduced echelon matrix from a given matrix contd...
Matrices L-3
Procedure to obtain a row reduced echelon matrix from a given matrix
Step1: Apply interchange of rows to push down the zero rows to the end of the matrix.
Step2: Find the first non-zero column (from left) (let us suppose that it is k 1 k_1 k 1 )
Step3: Again apply interchange of rows to push up a row where leading non-zero coefficient occurs in first non- zero colum to the first row.
Divide the first row by the leading non-zero
Row elementary operations row interchange → \rightarrow → Row elementary operations replacement by operations → \rightarrow → Procedure to obtain a row reduced echelon matrix from a given matrix → \rightarrow → Procedure to obtain a row reduced echelon matrix from a given matrix contd... → \rightarrow → Example to obtain row reduced echelon form
Matrices L-3
Procedure to obtain a row reduced echelon matrix from a given matrix contd…
coefficient, so that the leading non-zero coefficient becomes 1.
Step 4. Next apply R i ⟼ R i + μ R 1 R_i \longmapsto R_i+\mu R_{1} R i ⟼ R i + μ R 1 for suitable values of i i i & μ \mu μ so that the first non-zero column has non-zero coefficients only in the first row.
Step 5: Repeat steps 2 to 4 for the submatrix obtained by deleting the 1 st 1^{\text {st }} 1 st row & 1 nd 1^{\text {nd }} 1 nd column until all the non-zero rows are exhausted.
Row elementary operations replacement by operations → \rightarrow → Procedure to obtain a row reduced echelon matrix from a given matrix → \rightarrow → Procedure to obtain a row reduced echelon matrix from a given matrix contd... → \rightarrow → Example to obtain row reduced echelon form → \rightarrow → Example to obtain row reduced echelon form
Matrices L-3
Let, ( 1 1 2 1 2 1 1 2 3 ) \left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right) 1 1 1 1 2 2 2 1 3
R 2 → R 2 + ( − 1 ) R 1 R 3 → R 3 + ( − 1 ) R 1 ( 1 1 2 0 1 − 1 0 1 1 ) R_2 \rightarrow R_2+(-1) R_1\\ R_3 \rightarrow R_3+(-1) R_1 \left(\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 1 & 1\end{array}\right) R 2 → R 2 + ( − 1 ) R 1 R 3 → R 3 + ( − 1 ) R 1 1 0 0 1 1 1 2 − 1 1
R 1 ⟶ R 1 + ( − 1 ) R 2 R 3 ⟶ R 3 + ( − 1 ) R 2 ( 1 0 3 0 1 − 1 0 0 2 ) R_1 \longrightarrow R_1+(-1) R_2\\ R_3 \longrightarrow R_3+(-1) R_2 \left(\begin{array}{ccc}1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 2
\end{array}\right) R 1 ⟶ R 1 + ( − 1 ) R 2 R 3 ⟶ R 3 + ( − 1 ) R 2 1 0 0 0 1 0 3 − 1 2
Procedure to obtain a row reduced echelon matrix from a given matrix → \rightarrow → Procedure to obtain a row reduced echelon matrix from a given matrix contd... → \rightarrow → Example to obtain row reduced echelon form → \rightarrow → Example to obtain row reduced echelon form → \rightarrow → Example to obtain row reduced echelon form
Matrices L-3
R 3 ⟶ 1 2 R 3 ( 1 0 3 0 1 − 1 0 0 1 ) R_3 \longrightarrow\frac{1}{2}R_3\left(\begin{array}{ccc}1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right) R 3 ⟶ 2 1 R 3 1 0 0 0 1 0 3 − 1 1
Procedure to obtain a row reduced echelon matrix from a given matrix contd... → \rightarrow → Example to obtain row reduced echelon form → \rightarrow → Example to obtain row reduced echelon form → \rightarrow → Example to obtain row reduced echelon form → \rightarrow → Thank You
Matrices L-3
R 1 → R 1 + ( − 3 ) R 3 R_1 \rightarrow R_1+(-3) R_3 R 1 → R 1 + ( − 3 ) R 3
R 2 → R 2 + R 3 R_2 \rightarrow R_2+R_3 R 2 → R 2 + R 3
( 1 0 0 0 1 0 0 0 1 ) \left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) 1 0 0 0 1 0 0 0 1
Thus, the row reduced echelon matrix obtained after applying the procedure to the matrix ( 1 1 2 1 2 1 1 2 3 ) \left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right) 1 1 1 1 2 2 2 1 3 is just the identity matrix.
Example to obtain row reduced echelon form → \rightarrow → Example to obtain row reduced echelon form → \rightarrow → Example to obtain row reduced echelon form → \rightarrow → Thank You → \rightarrow →
Matrices L-3
Thank You
Example to obtain row reduced echelon form → \rightarrow → Example to obtain row reduced echelon form → \rightarrow → Thank You → \rightarrow → → \rightarrow →
Resume presentation
Matrices L-3 Matrix lecture-3 $\rightarrow$ $\rightarrow$ Matrix lecture-3 $\rightarrow$ Associativity of matrix multiplication $\rightarrow$ Associativity of matrix multiplication proof