- Let, $A$ be a matrix of order $m \times n$ and $B$ be a matrix of order $n \times r$. Then the product
- of $A$ & $B$, denoted $A B$, is obtained as follows:
- $ A=\left[a_{i j}\right]_{\substack{ 1 \leqslant i \leqslant m \},{\ 1 \leqslant j \leqslant n }} $
- $ B=\left[b_{i j}\right]_{\substack{ 1 \leqslant i \leqslant n \},{\ 1 \leqslant j \leqslant r }} $
- Let, $A B=c=\left[c_{i j}\right]$. Then,
- $c_{i j}=\sum_{k=1}^n a_{i k} b_{k j} \text {. }$