Let, A be an n×m matrix i.e., A=[aij] & let α∈R or C. We define the matrix A as follows:
(α.A)ij=α.aij.
The α⋅A=[αaij]
i) (α+β)⋅A=α⋅A+β⋅A
Let, A=[aij]then,
(α+β)⋅A=[(α+β)⋅aij]
=[α⋅aij+β⋅aij]
=[α⋅aij]+[β⋅aij]
=α⋅[aij]+β⋅[aij]
=α⋅A+β⋅A
For any scalar α and for any two matrices A and B of same order, α⋅(A+B)=α⋅A+α⋅B.
Proof:
Let, A=[aij] and B=[bij].
α⋅(A+B)=α⋅([aij]+[bij])
=α⋅([aij+bij])
=[α⋅(aij+bij)]
=[α⋅aij+α⋅bij]
=[α⋅aij]+[α⋅bij]
=α⋅[aij]+α⋅[bij]
=α⋅A+α⋅B.
(α⋅β)⋅A=α⋅(β⋅A)=β⋅(α⋅A)
(α⋅β)⋅A=(α⋅β)⋅[aij]
=[(αβ)⋅aij]
=[α⋅(β⋅aij)]
=α[β⋅aij]
=α⋅([β⋅aij])
=α⋅(β⋅[aij])
=α⋅(β⋅A).
If A is any matrix, then the transpose of A, denoted At, is obtained as follows:
Let, A=[aij] and At=[bij].
Then, bij=aji.
If A is a matrix of order n×m, then At is a matrix of order m×n.
1) A =
Proof:
Let, A=[aij] and B=[bij]
(A+B)t=([aij]+[bij])t=([aij+bij])t
=[aji+bji]
=[aji]+[bji]
=At+Bt.
∴(A+B)t=At+Bt.
Proof:
Let, A=[aij]
(α.A)t=(α.[aij])t=([α.aij])t
=[α.aij]=α.[aij]
=α.At
Definition : A is called a symmetric matrix if A=At and a matrix A is called a skew-symmetric matrix if A=−At.
A=123234345
At=123234345
Note that A=At.
∴A is symmetric.
Let, A be an upper triangular matrix x. Then A cannot be symmetric unless A is a diagonal matrix. In particular, every diagonal matrix is skew symmetric.
If A is any, square matrix, then A+At is a symmetric matrix.
Proof:
Let, A=[aij]. Then, At=[aji].
A+At=[aij]+[aji]=[aij+aji]⟶(1)
(A+At)t=([aij+aji])t=[aji+aij]
=[aij+aji]=A+At (From (1)
Thus, A+At is symmetric.
If A is any square matrix, then A−At is a skew-symmetric matrix.
Proof:
Let, A=[aij]. Then At=[aji].
A−At=[aij]−[aji]
=[aij]+[−aji]=[aij−aji]→(1).
(A−At)t=([aij−aji])t
=[−aji+aij]
=[−(aij−aji)]
=−[aij−aji]
=−(A−At)( From (1)).
Thus, A−At is a skew-symmetric matrix.
Given any square matrix A, it can be written as a sum of a symmetric matrix and a skew-symmetic matrix.
Proof. Let A be any square matrix.
Claim: A=B+C when B is a symmetric matrix and C is a skew-symmetric matrix
Let, B=(2A+At)
and C=(2A−At)2
Then, B is a symmetric matrix and C is a skew-symmetric matrix.
B+C=2(A+At)+2(A−At)
=(2A+2At)+(2A−2At)
=2A+2At+2A−2At
=2A+2A
=(21+21)⋅A
=1⋅A=A
Thus, B+C=A or A=B+C.
Let, A be a matrix of order m×n and B be a matrix of order n×r. Then the product
of A & B, denoted AB, is obtained as follows:
A=[aij]1⩽i⩽m, 1⩽j⩽n
B=[bij]1⩽i⩽n, 1⩽j⩽r
Let, AB=c=[cij]. Then,
cij=∑k=1naikbkj.
A=[1324]
B=[56]
m=2, n=2, r=1
order of A = 2 x 2
order of B = 2 x 1
∴[1324][56]
=[∑12a1kbk1∑12a2kbk−1]
=[a11b11+a12b21a21b11+a22b21]
=[5+1215+24]
=[1739]
A=[1324]2×2
B=[123456]2×3
AB=[1+43+83+89+165+1215+24]
=[51111251739]
A=1472583693×3
B=1352463×2
AB=1+6+154+15+307+24+452+8+188+20+3614+32+54=2249762864100
For any two square matrices A & B of same order,
(AB)t=BtAt.
Proof:
Let,A=[aij] and B=[bij],1⩽i,j⩽n.
Let C=AB=[cij]
where, cij=∑k=1naikbkj.
(AB)t=ct=[cij]t=[cji]=[∑k=1najkbki] .
BtAt=[bij]t[aij]t
=[bji][aji]
=[∑k=1nbkiakji]
=[∑n=1nakjbki]
=(AB)t.
Thus, (AB)t=BtAt.
A=[142536]2×3
B=1512623744853×4
AB=[1+10+34+25+62+12+68+30+123+14+1212+35+244+16+1516+40+30]
=[1435205029113586]2×4
(AB)t=1420293835507186
Bt=123456781245
At=123456
BtAt=123456781245123456
=1+10+32+12+63+14+124+16+154+25+68+30+1212+35+2416+40+30
=1420243535507186
(AB)t=BtAt