Problem-1
Let, 6−π<θ<12−π, suppose α and β are the roots of the equation x2−2xsecθ+1=0 , and α2 and β2 are the root of the equation x2+2xtanθ−1=0.Ifα1>β1, and α2>β2 then, α1+β2 equals?
Solution
x2−2xsecθ+1=0
(α1,β1)=22secθ±4sec2θ−4
=secθ±sec2θ−1
sec2θ=1+tan2θ
(α1,β1)=secθ±tanθ
=(cosθ1±sinθ)
θ∈(−6π,−12π)⇒sinθ<0,cosθ>0
cosθα1=(1−sinθ)
x2+2xtanθ−1=0
(α2,β2)=2−2tanθ±4tan2θ+4
=−tanθ±1+tan2θ=sec2θ [∵1+tan2θ=sec2θ]
Problem-2
The number of possible values of θ where 0<θ<π, for which the system of equation
(y+z)cos3θ=(xyz)sin3θ
xsin3θ=y2cos3θ+z2sin3θ
xyzsin3θ=(y+2z)cos3θ+ysin3θ
have a solution (x0,y0,z0) with y0z0=0 is ?
Solution
(y+z)cos3θ=(xyz)sin3θ
xyzsin3θ=2zcos3θ+2ysin3θ
xyzsin3θ=(y+2z)cos3θ+2ysin3θ
(y+3)cos3θ=2zcos3θ+2ysin3θ
(y+3)cos3θ=(y+2z)cos3θ+ysin3θ
=(ycos3θ)+2zcos3θ+ysin3θ
2zcos3θ+2ysin3θ=ycos3θ+2zcos3θ+ysin3θ
ysin3θ=ycos3θ
y(sin3θ−cos3θ)=0
→sin3θ−cos3θ=0,y=0
→(y+z)cos3θ=(2z+2y)cos3θ
(y+z)=0(y+z)cos3θ=0
sin3θ−cos3θ=0
21sin3θ−21cos3θ=0
sin3θcos4π−sin4πcos3θ=0
sin(3θ−4π)=0
3θ−4π=nπ for some integer n
θ=3nπ+12π∈(0,π)
θ=(12π,125π,43π)
Problem-3
The number of distinct solutions of the equation
45cos22x+cos4x+sin4x+cos6x+sin6x=2
in the interval[0,2π] is?
Solution
(sin2x+cos2x)3=1
[∵(A+B)3=A3+B3+3AB2+3A2B]
sin6x+cos6x+3sin2xcos4x+3cos2xsin4x=1
sin6x+cos6x=1−3sin2xcos4x−3cos2xsin4x
→sin6x+cos6x=1−3sin2xcos4x−3cos2xsin4x
(sin2x+cos2x)2=1
sin4x+cos4x+2sin2xcos2x=1
→sin4x+cos4x=1−2sin2xcos2x
cos2x=(cos2x−sin2x)
→cos22x=cos4x+sin4x−2sin2xcos2x
45cos22x+(1−2sin2xcos2x)+1−3sin2xcos4x
−3cos2xsin4x=2
45cos22x=2sin2xcos2x+3sin2xcos2x(sin2x+cos2x)
45cos2x=5sin2xcos2x
cos22x=4sin2xcos2x=(2sinxcosx)2
cos22x=sin22x
cos22x=sin22x
cos22x−sin22x=0 cos4x=0
4x=(2n+1)2π, n is an integer
x=(2n+1)8π,x∈[0,2π]
x=8π,83π,85π,87π,89π,811π,813π,815π,817
Problem-4
Prove that the values of the function (sin3xcosxsinxcos3x) do not lie between 31 and 3 for any real x.
Solution
tan3xtanx
tan3x=1−3tan2x3tanx−tan3x
=3−tan2x1−3tan2x=3−a1−3a
a=tan2x⩾0a∈[0,∞]
3−a1−3a∈/(31,3)a∈[0,∞]
3−a1−3a=3−a(9−3a)−8=3−3−a8=3+a−38
i) a∈[0,3]
3⩾3−a>0
−3⩽a−3<0
−∞<a−38⩽3−8
−∞<3+a−38⩽(33−8)
If a∈[0,3] then,
3−a1−3a∈(−∞,31]
ii) if a∈(3,∞]⇒a−3>0
3−a1−3a=3+(a−38),0<a−38<∞
3−a1−3a∈(3,∞)
Problem-5
∑k=1132sin(4π+6(k−1)π)2sin(4π+6kπ)2
Solution
2sinAsinB=cos(A−B)−cos(A+B)
=cos6π−cos(2π+6(2k−1)π)
=cos6π+6sin(2k−1)π[∵cos(2π+θ) =−sinθ]
∑k=113[23+sin6(2k−1)π]2
(k+6)thterm: sin(62(k+6)−1)π
=sin[6(2k−1)π+612π]
=sin[6(2k−1)π+2π]
=sin6(2k−1)π[sin625π]
=sin(4π+6π)=sin(6π)
=kth term
(∑k=16[23+sin6(2k−1)π]4)+[23+sin6π]2
=[23+21]2=[3+1]4
=224(3−1)=2(3−1)
[23+sin6(2k−1)π]4
k=1[23+21]4
k=2[23+1]4
k=3[23+21]4 [∵sin65π=sin6π=21]
k=4[23−21]4
k=5[23−1]4
k=6[23−21]4 [∵sin611π=−sin6π]