- $ \sec ^2 \theta =1+\tan ^2 \theta$
- $ \left(\alpha_1, \beta_1\right)=\sec \theta \pm \tan \theta$
- $ =\left(\frac{1 \pm \sin \theta}{\cos \theta}\right)$
- $ \theta \in\left(-\frac{\pi}{6},-\frac{\pi}{12}\right) \Rightarrow \quad\sin \theta<0, \cos \theta>0$
- $\frac{\alpha_1=(1-\sin \theta)}{\cos \theta}$
- $ x^2+2 x \tan \theta-1=0$
- $ \left(\alpha_2, \beta_2\right) =\frac{-2 \tan \theta \pm \sqrt{4 \tan ^2 \theta+4}}{2}$
- $ =-\tan \theta \pm \sqrt{1+\tan^2 \theta } = \sec^{2}\theta$ $\quad$ $ [\because 1+ \tan^2 \theta = {\sec ^2 \theta}]$