- We rewrite the expression as follows:
- $\left(\sin ^{-1} x\right)^4+\left(\cos ^{-1} x\right)^4=\left(\sin ^{-1} x\right)^4+\left(\frac{\pi}{2}-\sin ^{-1} x\right)^4$
- Let, $\theta=\sin ^{-1} x, ~ ~$ where, $\theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] $
- Let, $ f(\theta)=\theta^4+\left(\frac{\pi}{2}-\theta\right)^4, \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] $
- Setting the derivative equal to zero, we get the point for extremum.
- $\Rightarrow f^{\prime}(\theta)=4 \theta^3-4(\pi / 2-\theta)^3=0 $
- $ \Rightarrow \theta^3-(\pi / 2-\theta)^3=0 $