Problem-1
For a>0,b>0, and c>0 find
tan−1bca(a+b+c)+tan−1acb(a+b+c)+tan−1abc(a+b+c)
Solution
tan−1[aabca+b+c]+tan−1[babca+b+c]=tan−1X+tan−1Y
where, X=[aabca+b+c],Y=[babca+b+c]
Observe, XY = ca+b+c>1
Solution
tan−1[aabca+b+c]+tan−1[babca+b+c]
∵X,Y>0 & XY>1
⇒tan−1X+tan−1Y=π+tan−11−XYX+Y
=π+tan−11−c(a+b+c)(a+b)abca+b+c=π+tan−1[−caba+b+c]
=π−tan−1[cabca+b+c]∵tan−1(−x)=−tan−1x
Problem-2
For ∣x∣⩽1 find the smallest and the greatest value of
(sin−1x)4+(cos−1x)4
Solution
Using the identity,
sin−1x+cos−1x=2π.
We rewrite the expression as follows:
(sin−1x)4+(cos−1x)4=(sin−1x)4+(2π−sin−1x)4
Let, θ=sin−1x, where, θ∈[−2π,2π]
Let, f(θ)=θ4+(2π−θ)4,θ∈[−2π,2π]
Setting the derivative equal to zero, we get the point for extremum.
⇒f′(θ)=4θ3−4(π/2−θ)3=0
⇒θ3−(π/2−θ)3=0
⇒θ3=(π/2−θ)3
⇒θ=2π−θ⇒θ=π/4
To determine whether this point is a maximum or minimum, we need to take second derivative,
f′′(θ)=12θ2+12(2π−θ)2>0
∴θ=4π will give a minimum value.
The minimum value of f(θ) is (4π)4 + (2π−4π)4=128π4
To find the maximum value we start with the first derivative of the given function,
f′(θ)=4[θ3−(π/2−θ)3]
→ For,4π⩽θ⩽2π
f′(θ)⩾0⇒f(θ) is increasing in [4π,2π]
→ For −2π⩽θ⩽4π,f′(θ)⩽0
⇒f′(θ) is decreasing in [−2π,4π]
We easily observe from the graph that the maximum value attains at end points.
f(θ)=θ4+(2π−θ)4
⇒f(−2π)=16π4+π4
⇒f(2π)=16π4
The maximum value of
(sin−1x)4+(cos−1x)4
=16π4+π4=1817π4.
Problem-3
The number of solutions to the equationsin−1(sinx)=cosx, where,
x∈[−2π,2π] is ?
Solution
sin−1(sinx)=y∈[−2π,2π]
sinx=siny
i) −2π⩽x⩽2π⇒y=x
ii) 2π⩽x⩽23π, then, π−x∈[−2π,2π]
⇒sin(π−x)=sinx=siny
⇒π−x=y⇒π−x=y=sin−1(sinx)
iii)23π⩽x⩽25π,x−2π∈[2−π,2π]
⇒sin(x−2π)=sinx=siny
⇒y=x−2π
→ For 23π⩽x⩽25π,sin−1(sinx)=x−2π
→ For 2π⩽x⩽23π,sin−1(sinx)=π−x
→ For −2π⩽x⩽2π,sin−1(sinx)=x
→ For −23π⩽x⩽−2π,sin−1(sinx)=−(π+x)
→ For −25π⩽x⩽−23π,sin−1(sinx)=−(x+2π)
Problem-4
Let, S={x∈(−π,π):x=0,±2π} the sum of all distinct solutions of the equation
3secx+cosecx+2(tanx−cotx) =0
in the set S is equal to ?
Solution
3secx+cosecx+2(tanx−cotx)=0
∵sinx=0,cosx=0
cosx3+sinx1+2(cosxsinx−sinxcosx)=0
if x∈S then, sinxcosx=0
3sinx+cosx+2(sin2x−cos2x)=0
23sinx+21cosx=cos2x
cosxcos3π+sinxsin3π=cos2x
cos(x−3π)=cos2x
cosx=cosy⇔x=2nπ±y
cos(x−3π)=cos2x
by using identity y = x−3π
2x=2nπ±(x−π/3)
2x=2nπ+(x−π/3)
x=2nπ−π/3
n=0,x=−π/3∈(−π,π),n=1,x=2π−3π∈/(−π,π)
x=−π/3
2x=2nπ−(x−π/3)
3x=2nπ+π/3
x=32nπ+π/9
n=0,x=π/9∈(−π,π)
n=1,x=32π+π/9∈(−π,π)
n=−1,x=3−2π+π/9∈(−π,n)
x=−3π
cos2x=cos(x−π/3)=cos(π/3−x)
2x=snππ±(x−π/3)
cos2x=cos(π/3−x)
2x=2nπ±(π/3−x)