- For, $y =0$ ,
- As, $ x + z=2 y = 0 \Rightarrow z = -x $
- $ \tan ^{-1} x, \tan ^{-1} (-y) =0 \quad \tan ^{-1} = - \tan^{1} x $
- **Possibility 1 :** $ x, 0, -x \leftarrow$ in A.P.
- $\tan^{-1} x , 0 , \tan^{-1} (-x)$ $\leftarrow$ in A.P.
- For, $y^2 = xz$ , $x + z = 2y $
- **Possibility 2:** $\Rightarrow x = y = z$