Problem:1
Prove that,
cos[tan−1[sin(cot−1x)]]=x2+2x2+1 .
Solution:
Let, cot−1x=θ∈(0,π)⇒ x=cot(θ) , tanθ=x1
sinθ=sin2θ∵θ∈(0,π)⇒sinθ>0
=1−cos2θ
=1−sec2θ1
=1−1+tan2θ1
=1+tan2θtan2θ
sinθ=1+x21x21=1+x21 ⇒sin(cot−1)=1+x21
Now, substituting in the expression we get,
cos[(tan−11+x21)]
Let, tan−1(1+x21)=ϕ∈(0,2π)∵θ>0
tanϕ=1+x21 , again substitute the expression of tan−1(1+x21) we get,
cosϕ=cos2ϕ=sec2ϕ1=1+tan2ϕ1⋯(a)
We know,
tanϕ=1+x21 on substitution in ⋯ (a) we get,
cosϕ=1+tan2ϕ1 =1+1+x211
=2+x21+x2
Problem:2
If f:[0,4π]→[0,π] be defined by f(θ)=cos−1(cosθ). Then the number of points θ∈[0,4π] satisfying the equation f(θ)=1010−θ is ____?
Solution:
θ∈[0,4π] such that
cos−1(cosθ)=1010−θ
θ∈[0,4π]
Divide the region [0,4π] into 4 regions,
θ∈(π,2π]⇔(2π−θ)∈[0,π]⊆ Range set of cos−1
cos−1(cosθ)=θ
{∵cos−1(cosθ)∈[0,π] and θ∈[π,2π] }
cos−1(cosθ)=x,x∈[0,π]
cosθ=cosx
cos(ϕ2π−θ)=(cosθ)
cosϕ=cosθ
ϕ∈ Range set of cos−1
ϕ=cos−1(cosθ)=2π−θ
If θ∈(2π,3π]
θ−2π∈(0,π]⊆ Range set of cos−1
cos(θ−2π)=cosθ
θ−2π=cos−1(cosθ)
If θ∈(3π,4π]
(4π−θ)∈[0,π)⊆ Range set of cos−1
cos(4π−θ)=cosθ
4π−θ=cos−1(cosθ)
Problem:3 Solve the following equation for x
(tan−12x)+ (tan−13x)=4π,x>0.
Solution:
tan−12x=(4π)−tan−13x
=tan−11−tan−13x
tan−11+tan−1(−3x)
tan−1(2x)=tan−1(1+3x1−3x)
tan−1a=tan−1b
a=b
tan−1(−x)=−tan−1(x)
tan−1x+tan−1y=⎩⎨⎧tan−1(1−xyx+y),xy<1π+tan−1(1−xyx+y),x>0,y>0,xy>1−π+tan−1(1−xyx+y),x<0,y<0,xy>1
Problem:4
If x,y and z are in A.P. and tan−1x,tan−1y and tan−1z are also in A.P., then
a) x=y=z
b) 2x=3y=6z
e) 6x=3y=2z
d) 6x=4y=3z
Solution:
y=2x+z,y−x=z−y
θ⩾0tan−1y−tan−1x=tan−1z−tan−1y
2θ<π
0⩽θ<2π
0≤θ<2π⊆ Range set oftan−1tan−1y−tan−1x=tan−1z−tan−1y
tan(θ)=tan(tan−1y−tan−1x)=1+xyy−x⩾0
θ=tan−11+xyy−x=tan−11+zyz−y
1+xyy−x=1+zyz−y
(y−x)(1+zy)=(z−y)(1+xy)
y+zy2−x−xyz=z+xyz−y−xy2
(∵ x,y,z are in A.P. ∴ 2y=x+z or y−x=z−y)
2xyz=y2(x+z)=2y3
2xyz=2y3
2y(y2−xz)=0
y=0 or y2=xz
For, y=0 ,
As, x+z=2y=0⇒z=−x
tan−1x,tan−1(−y)=0tan−1=−tan1x
Possibility 1 : x,0,−x← in A.P.
tan−1x,0,tan−1(−x) ← in A.P.
For, y2=xz , x+z=2y
Possibility 2: ⇒x=y=z
Problem:5
If 0<x<1 then,
is equal to ___ ?
Solution
cot−1x = θ,θ∈(4π,2π)
x=cotθ
1+cot2θ
=1+tan2θ1=tan2θ1+tan2θ
=(sinθ1)
(1+x2){xcosθ+sinθ}2−(1+x2)
={1+x2(xcosθ+sinθ)}2−(1+x2)
(∵1+x2=sinθ1)
={sinθxcosθ+1}2−(1+x2)
=(xcotθ+1)2−(1+x2)
(∵cotθ=x)
Problem:6
Find the number of positive solutions satisfying the equation
tan−1(2x+11)+tan−1(4x+11)=tan−1x22
x>0
2x+1>1
0<2x+11⋅4x+11<1
Solution
tan−1x+tan−1y=⎩⎨⎧tan−1(1−xyx+y),xy<1π+tan−1(1−xyx+y),x>0,y>0,xy>1−π+tan−1(1−xyx+y),x<0,y<0,xy>1
[(2x+1)(4x+1)−1]6x+2=x22
3x3−7x2−6x=0
x(3x2−7x−6)=0
x(3x+2)(x−3)=0
x=0,−32,3