We are looking for something like,
cos−1x=tan−1(?),∣x∣⩽1
Let, cos−1x=θ,θ∈[0,π]
If x⩾0,θ∈[0,2π]⊂[−2π,2π].
tan(cos−1x)=tan(θ)
=cos(θ)sin(θ)
=x1−cos2θ
∵x=cosθ ; sin2θ+cos2θ=1
⇒tan(θ)=x1−x2 [∵θ∈ Range set of tan−1]
θ=cos−1x=tan−1x1−x2,x⩾0
If −1⩽x<0,θ=cos−1x∈(2π,π]
tan(θ)=cosθsinθ=cosθ1−cos2θ=x1−x2
θ∈/ Range set of tan−1
∴θ=tan−1x1−x2
But, tan(θ)=tan(θ−π),
θ−π∈(−2π,0]
∴θ−π∈ Range set of tan−1.
tan(θ)=tan(θ−π)=x1−x2
θ−π∈ Range set of tan−1
∴θ−π=tan−1x1−x2
θ=π+tan−1x1−x2 x<0
So,
cos−1x=tan−1(x1−x2), x≥0
cos−1x=π+tan−1(x1−x2), x<0
Now, we have to make an equation like
tan−1x=cos−1(?),x∈R
Let, x=tanθ⇒tan−1x=θ,θ∈(−2π,2π)
cos(tan−1x)=cosθ=secθ1=sec2θ1
=1+tan2θ1
cosθ=cos(tan−1x)=(1+x21)
θ=cos−11+x21, true only when θ∈[0,π]
We further divide into cases to get respective formulas,
case I: x⩾0
θ=tan−1x,θ∈[0,2π)
[0,2π)⊂[0,π]
← Range set of cos−1
θ∈ Range set cos−1
cos(θ)=1/1+x2,
θ=tan−1x=cos−11+x21,x⩾0
case II: x<0
θ=tan−1x,θ∈(2−π,0)
θ∈/[0,π],θ∈/ Range set of cos−1
θ+π∈(2π,π)⊂[0,π]
∴θ+π∈ Range set ofcos−1
cos(θ+π)=−cosθ=1+x2−1
θ+π=cos−11+x2−1
θ=−π+cos−11+x2−1
→cot−1x=tan−1(1/x),x>0
→cot−1x=π+tan−1(x1),x<0
→tan−1x=cot−1(x1),x>0
→tan−1x=cot−1(x1)−π,x<0
Find
cot{∑n=123cot−1(1+∑k=1n2k)}
Solution:
cot−1(1+∑k=1n2k)=cot−1(1+2×(1+2+.......+n))
=cot−1(1+2×2n(n+1))
=cot−1(1+n(n+1))
= tan−1(n+1)−tan−1(n)
Let, cot−1(1+n(n+1))=θ∈(0,π)
cotθ=1+n(n+1)
tanθ=1+n(n+1)1=1+(n+1)n(n+1)−n
∵tan(x−y)=1+tanxtanytanx−tany
⇒tanθ=1+tan(tan−1(n+1))tan(tan−1n)tan(tan−1(n+1))−tan(tan−1n)
⇒tanθ=tan(tan−1(n+1)−tan−1n)
(∵n∈N;n,n+1>0)
tan−1(n+1)∈(0,π/2)
tan−1(n)∈(0,π/2)
tan−1(n+1)−tan−1n∈(−π/2,π/2) ← Range set of tan−1
θ∈(0,π/2)
[∵θ∈(0,π) & (2−π,2π)]
tan−1(n+1)−tan−1n∈(0,π/2)
[∵tan−1 is increasing function in (0,2π)]
⇒θ=tan−1(n+1)−tan−1(n)
[n+1>n⇒tan−1(n+1)>tan−1n]
⇒cot−1(1+∑k=1n2k)=∑n=123(tan−1(n+1)−tan−1n)
=(tan−12−tan−11)+(tan−13−tan−12)⋯+(tan−123−tan−122)+(tan−124−tan−123)
=tan−124−tan−11
tan−124−tan−11
=tan−1x24+tan−1y(−1)
tan−11−(24)(−1)24+(−1)=tan−12523
Now, according to the question,
cot(∑n=123cot−1(1+∑k=12n2k))=cot(tan−12523)
(∵ tan−12523=θ ,⇒ 2523=tanθ , ⇒ cotθ=25/23)
=cot(θ)
=25/23
tan−1x+tan−1y=
⎩⎨⎧tan−1(1−xyx+y),xy<1π+tan−1(1−xyx+y),x>0,y>0,xy>1−π+tan−1(1−xyx+y),x<0,y<0,xy>1
Problem
Find x,0<∣x∣<2
such that
Solution:
Observe,
x−2x2+4x3−8x4+⋅⋅⋅
=x(1−2x+4x2−8x3+⋯)
=x(1+(−2x)+(2−x)2+(−2x)3⋯)
=1−(2−x)x
=1+2xx
[∵∣x∣<2⇒∣x∣<2⇒∣2x∣<1⇒∣2−x∣<1]
And,
x2−2x4+4x6−⋯
=x2(1−2x2+4x4⋯⋅⋅⋅)
=x2(1+(2−x2)+(2−x2)2+⋯⋅) =(1−(−2x2))x2
=1+2x2x2[∵∣x∣<2,x2<2,2x2<1,−2x2<1]
We are given,
sin−1(x−2x2+4x3−⋯)+cos−1(x2−2x4+4x6−⋯)=2π
∵[x2−2x4+4x6−⋯=1+2x2x2]
[x−2x2+4x3−⋯]=1+2xx]
⇒1+2xx=1+2x2x2,
⇒x(1+2x2)=x2(1+2x)
⇒x+2x2 =x2+2x2
x(x−1)=0∵0<∣x∣<2
⇒x=1