Find such that
Solution:
sin(cos−1(x) = 21 = sin(6π)
x=cos6π=63
But, x must be negative.
If -1 < x < 0 , then
cos−1x∈(2π,π) But sin−1(21) ∈(2−π,2π)← Range set of sin−1
Find
such that
sin(cos−1x)=21=sin6π
x=cos6π=63
Using supplementary angles
For −1<x<0,θ=cos−1x∈(2π,π)
But, sin(π−θ)=sinθ=sin(cos−1x)
π−θ∈(0,2π)∈ Range set of sin−1
sin(π−θ)=21.
⇒π−θ=sin−1(21)
π−cos−1x=sin−1(21)=6π
cos−1x=65π
x=cos65π=−cos6π=−23
f : Trigonometric functions (sin,cos,tan,cot, sec, cosec)
f:A⟶B
f−1:B⟶C⊂A
If f(θ)=x,θ∈C then θ=f−1(x)
If f(θ)=x,θ∈/C then θ= ? θ=f−1(x)
sin:R⟶[−1,1]
sin−1:[−1,1]⟶[2−π,2π]
sin(θ)=x,x∈[−1,1]
Find θ, if θ∈[mπ−2π,mπ+2π] , where m is an integer.
sin(θ)=x,
m=0,θ∈[2−π,2π]
θ=sin−1x
sinθ=x,θ∈[mπ−2π,mπ−2π]
θ−mπ∈[−2π,2π] ← Range set of sin−1
sin(θ−mπ)=sinθcosmπ
=(−1)m
=(−1)msinθ
=(−1)mx
m even:
sin(θ−mπ)=x
θ−mπ=sin−1x
θ=mπ+sin−1x
m odd ;
sin(θ−mπ)=(−1)mx=−x
θ−mπ=sin−1(−x)=−sin−1x
θ=mπ−sin−1x.
In general,
θ∈[mπ−2π,mπ+2π] s.t. sinθ=x,∣x∣⩽1
θ=mπ+sin−1x, m is even
θ=mπ−sin−1x, m is odd
Show :
tan(tan−1x+tan−1y)=1−tan(tan−1x)tan(tan−1y)tan(tan−1x)+tan(tan−1y)=1−xyx+y
Solution :
Let,
A=tan−1x, B=tan−1y
tan(A+B)=1−tanAtanBtanA+tanB
tan(tan−1x+tan−1y)=1−xyx+y
tan−1x+tan−1y=?
In general,
tan−1x+tan−1y=tan−1(1−xyx+y)
∵ Range set for tan−1 is (2−π,2π)
Condition | tan−1x+tan−1y |
---|---|
xy<1 | tan−1(1−xyx+y) |
x>0,y>0,xy>1 | π+tan−1(1−xyx+y) |
x<0,y<0,xy>1 | −π+tan−1(1−xyx+y) |
We know,
tan−1x+cot−1x=2π,x∈R
tan−1(x1)=cot−1x,x>0
Add the above formulas we get,
tan−1x+tan−1(x1)=2π,x>0
⇒−tan−1x−tan−1(x1)=2−π,x>0
tan−1(−x)+tan−1(−x1)=2−π,−x<0
Put,
y=−x
tan−1y+tan−1(y1)=2−π,y<0
Condition-1:
For xy < 1
Case (i)
x>0,y>0,xy<1
tan−1x∈(0,2π),tan−1y∈(0,2π)
0<y<x1
0<tan−1y<tan−1(x1)…(a)
We know, 0<tan−1x (See graph) and add tan−1x to equation (a)
⇒0<tan−1x<tan−1x+tan−1y<tan−1x+tan−1(x1)=2π
Condition-1: For xy < 1
Case (ii)
x<0,y<0,xy<1
tan−1x∈(2−π,0),tan−1y∈(2−π,0)
y>x1
0>tan−1y>tan−1(x1)…(b)
We know, 0>tan−1x (See graph) and add tan−1x to equation (b)
⇒0>tan−1x>tan−1x+tan−1y>tan−1x+tan−1x1
(∵tan−1x+tan−1x1=2−π)
⇒0>tan−1x+tan−1y>2−π
Case (iii)
For xy ≤ 0
xy⩽0
x⩽0,y⩾0
tan−1x∈[2−π,0],tan−1y∈[0,2π]
⇒tan−1x+tan−1y∈[−2π,2π]
x⩾0,y⩽0
tan−1x∈[0,2π],tan−1y∈[2−π,0]
tan−1x+tan−1y∈[2−π,2π]
Condition-2:
x>0,y>0,xy>1
tan−1x∈(0,2π)
tan−1y∈(0,2π)
y>x1
⇒tan−1y>tan−1(x1)
tan−1x+tan−1y>=2πtan−1x+tan−1x1
⇒tan−1x+tan−1y>2π
Condition-2:
θ=tan−1x+tan−1y>2π
⇒θ<π ∵tan−1x<2π & tan−1y<2π
⇒θ∈(2π,π)θ∈/ Range set of f−1
But, θ−π∈(2−π,0) ⊂ Range set of tan−1
⇒tan(θ−π)=tanθ=1−xyx+y
θ−π=tan−11−xyx+y
→ For, ∣x∣≤1
2tan−1x=tan−1[1−x22x]
→ For, x>1
2tan−1x=π+tan−1[1−x22x]
→ For, x<−1
2tan−1x=−π+tan−1[1−x22x]
∵tan−1 is odd function
⇒tan−1x−tan−1y=tan−1x+tan−1(−y)
Conditions | tan−1x−tan−1y |
---|---|
x(−y)<1 ,xy>−1 | tan−1(1−x(−y)x+(−y)) = tan−1(1+xyx−y) |
x>0,−y>0,x(−y)>1 x>0,y<0,xy<−1 | π+tan−1(1−x(−y)x+(−y)) = π+tan−1(1+xyx−y) |
x<0,−y<0,x(−y)>1x<0,y>0,xy<−1 | −π+tan−1(1−x(−y)x+(−y)) = −π+tan−1(1+xyx−y) |
To make identity something like, sin−1x=tan−1(?),∣x∣⩽1
Let, θ=sin−1x,θ∈[−2π,2π]
tanθ=cosθsinθ=1−x2x
∵cos2θ=1−sin2θ=1−x2⇒cosθ=1−x2 because cosθ>0
tan(sin−1x)=1−x2x
⇒θ=tan−1(1−x2x)∵θ=sin−1x
⇒sin−1x=tan−11−x2x
In, tan−1(x)=sin−1(?),x∈R we have to find out(?)
Let θ, θ=tan−1(x)∈(2−π,2π)
sinθ=secθtanθ=1+tan2θtanθ∵secθ>0
=1+x2x
∵ x=tanθ1+tan2θ=sec2θ
⇒sinθ=1+x2x=sin(tan−1x)=1+x2x
⇒tan−1x=sin−11+x2x
Problem-2
Find
sin−1(31)+sin−1[32(1−81)]=?
Solution
sin−1(x)=tan−11−x2x
sin−1(31)=tan−1(91−131)=tan−1(81)
sin−1(32(1−81))=tan−1[1−94(18−12)32(81−1)]
=tan−19−4(1+81−82)2(81−1)
tan−15−21+882(1−81)=tan−129+82(1−81)
tan−136+882(8−1)
sin−131+sin−1[32(1−81)]
=tan−1(81)+tan−1(9+28(8−1))
tan−1x+tan−1y=tan−11−xyx+y,xy<1
=tan−1(81+9+28(8−1))=tan−1(1)
(1−72+168(8−1))=4π