- We know,
- $\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}, x \in \mathbb{R} $
- $\tan ^{-1}\left(\frac{1}{x}\right)=\cot ^{-1} x, x>0$
- Add the above formulas we get,
- $\tan ^{-1} x+\tan ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{2}, x>0$
- $ \Rightarrow -\tan ^{-1} x-\tan ^{-1}\left(\frac{1}{x}\right)=\frac{-\pi}{2},x>0$
- $\tan ^{-1}(-x)+\tan ^{-1}(\frac{1}{-x})=\frac{-\pi}{2},-x<0$