Inverse Trigonometric Functions L-1
Inverse trigonometric functions
lecture-1
Inverse Trigonometric Functions L-1
Introduction
sin:R→[−1,1]
x→sinx∈[−1,1]
Can we define the inverse function?
will there exist a unique
such that
sinx=y?
Inverse Trigonometric Functions L-1
Graphical representation
Inverse Trigonometric Functions L-1
Graphical representation
-
Let,
-
-
Let, f’:R+→R+
-
And, taking
,where,
-
-
.
Inverse Trigonometric Functions L-1
sin−1 function
Inverse Trigonometric Functions L-1
sin−1 function
-
-
-
-
-
-
Inverse Trigonometric Functions L-1
Sine function table
x |
|
sin x |
2−π |
|
-1 |
3π |
|
2−3 |
4−π |
|
2−1 |
6−π |
|
2−1 |
0 |
|
0 |
x |
|
sin x |
6π |
|
1/2 |
4π |
|
21 |
3π |
|
23 |
2π |
|
1 |
Inverse Trigonometric Functions L-1
cos−1 function
Inverse Trigonometric Functions L-1
cos−1 function
cos−1:[−1,1]→[0,π]
-
-
-
-
Inverse Trigonometric Functions L-1
Cosine function table
x |
cos(x) |
π |
-1 |
5π/6 |
|
3π/4 |
|
2π/3 |
-1/2 |
π/2 |
0 |
x |
cos(x) |
π/3 |
1/2 |
π/4 |
|
π/6 |
|
0 |
1 |
Inverse Trigonometric Functions L-1
tan−1 function
- tan:R−{(n+21)π∣n∈z}→R
Inverse Trigonometric Functions L-1
tan−1 function
Inverse Trigonometric Functions L-1
Tangent function table
x |
tanx |
-π/3 |
|
-π/4 |
-1 |
-π/6 |
|
0 |
0 |
x |
tanx |
π/6 |
|
π/4 |
1 |
π/3 |
|
Inverse Trigonometric Functions L-1
cot−1 function
Inverse Trigonometric Functions L-1
cot−1 function
Inverse Trigonometric Functions L-1
Cotangent function table
x |
cot(x) |
π/6 |
|
π/4 |
1 |
π/3 |
|
π/2 |
0 |
x |
cot(x) |
2π/3 |
|
3π/4 |
-1 |
5π/6 |
|
Inverse Trigonometric Functions L-1
cosec−1 function
cosec:R− {nπ∣n∈Z} →R−(−1,1)
-
Inverse Trigonometric Functions L-1
cosec−1 function
-
-
-
-
-
cosec(3−π)=3−2cosec−1(3−2)=3−π
Inverse Trigonometric Functions L-1
Cosecant function table
x |
cosec(x) |
-π/2 |
-1 |
-π/3 |
-2/√3 |
-π/4 |
-√2 |
π/4 |
√2 |
π/3 |
2/√3 |
π/2 |
1 |
Inverse Trigonometric Functions L-1
sec−1 function
sec:R−{(n+21)π∣n∈Z}→R−(−1,1)
-
-
Inverse Trigonometric Functions L-1
Secant function table
x |
sec(x) |
0 |
1 |
π/6 |
32 |
π/4 |
2 |
π/3 |
2 |
2π/3 |
-2 |
3π/4 |
-2 |
5π/6 |
- 32 |
π |
-1 |
Inverse Trigonometric Functions L-1
Thank you
Inverse Trigonometric Functions L-1 Inverse trigonometric functions lecture-1 $\rightarrow$ $\rightarrow$ Inverse trigonometric functions lecture-1 $\rightarrow$ Introduction $\rightarrow$ Graphical representation