d2=(1+m2)[m(x0−α)−(y0−β)]2
CASE-I
Circles neither touch nor intersect
C1:(x1,y1)
C2:(x2,y2)
(x1−x2)2+(y1−y2)2>r1+r2
△PBC2∼△PAC1
Pc2Pc1=r2r1
l2l1+l2=1+l2l1=r2r1
l1/l2=(r1−r2)/r2
⇒l2=(r1−r2)l1r2⇒l22=(r1−r2)2l12r22
(α−x1)(β−y1)=(x2−x1)(y2−y1)
=(α−x2)(β−y2)
l22=(β−y2)2+(α−x2)2
l22=(β−y2)2+(α−x2)2=(α−x2)2×[1+(α−x2)2(β−y2)2]
⇒l22=(α−x2)2[1+(x2−x1)2(y2−y1)2]
=(r1−r2)2l12r22=(r1−r2)2r22[(y2−y1)2+(x2−x1)2]
(x2−x1)2(α−x2)2[(x2−x1)2+(y2−y1)2]=(r1−r2)2r22×[(x2−x1)2+(y2−y1)2]
α−x2=(r1−r2)r2(x2−x1)
α=x2+(r1−r2)r2(x2−x1)
α=(r1x2−r2x1)/(r1−r2)
β=(r1y2−r2y1)/(r1−r2)
(x−α)(y−β)=m
(α−x1)(β−y1)=(x2−x1)(y2−y1)
As Shortest- distance of a point-from a straight line:
d2=(1+m2)[m(x0−α)−(y0−β)]2
⇒(1+m2)[m(x1−α)−(y1−β)]2=r12…(i)
(1+m2)[m(x2−α)−(y2−β)]2=r22…(ii)
(x2−α)2(1+m2)[m−(x2−α)(y−β)]2=r22
[1+m2][m−(x2−α)(y2−β)]2=(x2−α)2r22…(ii′)
(1+m2)[m−(x1−α)(y1−β)]2=(x1−α)2r12…(i′)
(1+m2)[m−(x1−α)(y−β)]2=(x2−α)2r22…(ii′)
r2r1=PC2PC1⇒r22r12=PC22PC12
r22r12=(x2−α)2+(y2−β)2(x1−α)2+(y1−β)2=(x2−α)2[1+(x2−α)2(y2−β)2](x1−α)2[1+(x1−α)2(y1−β)2]
s : slope of line joining C1 and C2.
(1+m2)(m−s)2=(x1−α)2r12,α=(r1−r2)r1x2−r2x1
∴x1−α=x1+(r1−r2)(r2x1−r1x2)
ie., x1−α=(r1−r2)r1(x1−x2)
(1+m2)(m−s)2=(x1−x2)2(r1−r2)2=k
m=m1,m2
m2−2ms+s2=k+km2
m2(k−1)+2ms+(k−s2)=0
m1=m1,m2⋅
(y−β)=m1(x−α),
(y−β)=m2(x−α)
PC2PC1=r2r1