$ C=\frac{-8 \sqrt{3} \pm \sqrt{192-\frac{320}{3}}}{8}$
i.e.,
$ C=-\sqrt{3} \pm \sqrt{3-\frac{5}{3}}$
$ =-\sqrt{3} \pm \frac{2}{\sqrt{3}}$
$ C=-\sqrt{3}+\frac{2}{\sqrt{3}},-\sqrt{3}-\frac{2}{\sqrt{3}}$
$ C=\frac{-1}{\sqrt{3}}, \frac{-5}{\sqrt{3}},\quad\quad y=\frac{x}{\sqrt{3}}+c$
$ y=\frac{x}{\sqrt{3}}-\frac{1}{\sqrt{3}} \quad i.e., \quad x-\sqrt{3} y=1 , \quad x-\sqrt{3} y=5$
2.) Let $P Q$ and $R S$ be tangents at the Extremities of the diameter $P R$ of a circle of radius $r$. If $P S$ and $R Q$ intersect-at a point $x$ on the circumference of the circle, then $2 r$ equals
a) $\sqrt{P Q \cdot RS}$
b) $\frac{P Q+R S}{2}$
c) $\frac{2 P Q \cdot R S}{P Q+R S}$
d) $\sqrt{\frac{P Q^2+R S^2}{2}}$