Find the equation of circle (s) touching the x-axis at a distance of 3 units from the origin and having an intercept of length 27 on the Y-axis?
Let x2+y2+2yx+2y+c=0 the only point-which lies both the circle and the x-axis is (3,0)
(a,0)
a2+2ga+c=0
⇒g2=c
9+6g+c=0
9+6g+g2=0⇒(g+3)2=0
⇒c=9,g=−3
2f2−c=2f2−9=27f=±4.
C1: g=−3,f=−4
Centre (−g,−f)=(3,4)
C2:g=−3,f=+4
Centre (−g,−f)=(3,−4)
Let L1, be a straight line passing through the origin and L2 be the straight line x+y=1. If the intercepts made by the circle x2+y2−x+3y=0 on L1 and L2 are equal, then which of the following equation can represent L1 ?
a) x+y=0
b) x−y=0
c) x+7y=0
d) x−7y=0
C:x2+y2−xL2:x+yy+3y=0=1=1−x
x2+(1−x)2−x+3(1−x)=0
⇒x2−3x+2=0
⇒x=1,2
x2+m2x2−x+3mx=0
x2(1+m2)−(1−3m)x=0
x=0,(1−3m)/(1+m2)
∴L1 intersects the circle at- (0,0) (y=mx) and (1+m21−3m,1+m2m(1−3m))
∴2=(1+m2)(1−3m)2
⇒2=(−3m)2/(1+m2)
⇒2+2m2=1−6m+9m2
⇒7m2−6m−1=0
⇒(m−1)(7m+1)=0
⇒m=1,−71.
∴L1,y=x or y=7−x.
C:x2+y2+2gx+2fy+c=0
P(x1,y1)
Slope of tangent = (x−x1)(y−y1)
x1−(−g)y1−(−f)=x1+gy1+f= slope of OP
(x−x1)(y−y1)×(x1+y)(y1+f)=−1
⇒ (y−y1)(y1+f)+(x−x1)(x1+g)=0
⇒yy1+xx1+yf+xg=y12+y1f+x12+x1g
since P(x1,y1) lies on circle C,
x12+y12+2gx1+2fy1+c=0x12+y12+gx1+fy1=−(gx1+fy1+c)
yy1+xx1+yf+xg+gx1+fy1+c=0
y(y1+f)+x(x1+g)+gx1+fy1+c=0
C:x2+y2+2gx+2fy+c=0
slope of the normal at P
=(y2−(−f))/(x2−(−g))
=(y−(−f))/(x−(−g))
(x2+g)(y2+f)=(x+g)(y+f)
⇒ x(y2+f)+g(y2+f)=y(x2+g)+f(x2+g)
i.e., x(y2+f)−y(x2+g)
=f(x2+g)−g(y2+f)
=(fx2−gy2)
C:x2+y2+2gx+2fy+c=0
OP=(x1−(−g))2+(y1−(−f))2
OP=(x1+g)2+(y1+f)2
∵OP2=OT2+PT2
i.e.,
PT=OP2−OT2
PT=(x1+g)2+(y1+f)2−(g2+f2−c)