$\therefore L_1$ intersects the circle at- $(0,0)$ $(y=mx)$ and
$\left(\frac{1-3 m}{1+m^2}, \frac{m(1-3 m)}{1+m^2}\right)$
$\therefore \sqrt{2}=\sqrt{\frac{(1-3 m)^2}{\left(1+m^2\right)}}$
$\Rightarrow \quad 2=(-3 m)^2 /\left(1+m^2\right) $
$\Rightarrow \quad 2+2 m^2=1-6 m+9 m^2 $
$\Rightarrow \quad 7 m^2-6 m-1=0 $
$\Rightarrow \quad(m-1)(7 m+1)=0$
$\Rightarrow m=1,-\frac{1}{7}$.
$\therefore L_1, y=x $ or $\ y=\frac{-x}{7}$.