$ a^2+(m a+d)^2+2 g a+2 f(m a+d)+c=0 $
$ a^2\left(1+m^2\right)+2 a(\text { md }+m f+g) +\left(a^2+2 f d+c\right)=0$
Two distinct-real root $\left(a_0, a_1\right) ,\left(a_0, m a_0+d\right)$
$ \Rightarrow\left(a_1, m a_1+d\right)$
Equal real roots $\left(a_0\right) \Rightarrow\left(a_0, m a_0+d\right)$
Both roots are complex $\rightarrow$ No point of intersection.