C: x2+y2+2gx+2fy+c=0
P:(a,b)
OP =(−g−a)2+(−f−b)2=(g2+a2+2ag+f2+b2+2fb
OP<r⇒ P lies inside the circle
OP>r⇒ P lies outside the circle
OP=r⇒ P lies on the circle
$OP
g2+a2+2ag+f2+b2+2fb<g2+f2−c
a2+b2+2ag+2fb+c<0
Example:
C:x2+y2+6x−8y+4=0
P :(2,−1)
O P =(−5)2+(5)2
=50>21
C: x2+y2+2gx+2fy+c=0
L: y=mx+d
let- circle C and st. line L intersect at- some point P(a,b).
a2+b2+2ga+2fb+c=0
b=ma+d
a2+(ma+d)2+2ga+2f(ma+d)+c=0
a2(1+m2)+2a( md +mf+g)+(a2+2fd+c)=0
Two distinct-real root (a0,a1),(a0,ma0+d) ⇒(a1,ma1+d)
Equal real roots (a0)⇒(a0,ma0+d)
Both roots are complex → No point of intersection.
C: x2+y2+2x−4y−4=0
centre (−1,2) and Radius = 3
L:x+y=−5⇒y=−(x+5)
P(x,y)
x2+(x+5)2+2x+4(x+5)−4=0
2x2+16x+41=0
x=4−16±(256−328)
C: x2+y2+2gx+2fy+c=0
C: x2+y2+2gx+2fy+c=0
a2+2ga+c=0
a0,a1=−g±g2−c
$g^2
if g2>c,
a0,a1
a0=−g+g2−c
a1=−g−g2−c
the circle intersect the x-axis at two distinct points
(−g+g2−c,0),(−g−g2−c,0)
∴ intercept made by the circle on the x-axis =2g2−c.
if f2>c then the intersect made by the circle on the y-axis is =2f2−c.
if f2=c then the intersect made by the circle on the y -axis is 0.
if $f^2
If one of the diameters of the circle x2+y2−2x−6y+6=0 is a chord to some other circle centered at (2,1) then the radius of the other circle is 3_.