Find the locus of the foot of perpendicular from the foci of an ellipse to the tangents.
Solution: Consider the ellipse $\frac {x^2}{a^2} + \frac {y^2}{b^2}$ = 1 , a > b.
Recall that the equation of tangent where slope is m is given by y = mx + c, where $c^2 = a^2 m^2 + b^2$
i.e y = mx $\pm \sqrt {a^2 m^2 + b^2}$
If (h,k) is the foot of perpendicular from foci ($\pm $ ae,0) , then the slope of line joining (h,k) to foci is
k - 0 = $\frac {-1}{m}(h \pm ae)$
$\Rightarrow (mk + h)^2 = a^2 e^2 \longrightarrow $ (1)
Also, (h,k) lies on the tangent line
$\therefore (k-mh)^2 = a^2 m^2 + b^2 \rightarrow $(2)
======
Adding (1)&(2) $\Rightarrow m^2 k^2 + h^2 + 2mhk + k^2 + m^2 h^2 - 2mhk$
=$a^2 e^2 + a^2 m^2 + b^2$
$\Rightarrow (1 + m^2) (h^2 + k^2) = a^2 (1- \frac {b^2}{a^2}) + a^2 m^2 + b^2$
= $a^2 - b^2 + a^2 m^2 + b^2$
= $a^2 (1+m^2)$
$\Rightarrow h^2 + k^2 = a^2$
$\therefore$ The locus is $ x^2 + y^2 = a^2$