that is $ D =4\left(a^2 y_1^2+b^2 x_1^2-a^2 b^2\right)$
$ =4 a^2 b^2\left(\frac{x_1^2}{a^2}+\frac{y_1^2}{b}-1\right)=0 $
$\therefore \quad m =\frac{2 x_1 y_1}{2\left(x_1^2-a^2\right)}=\frac{x_1 y_1}{x_1^2-a^2} .$
$(\therefore (x_1, y_1)$ lies on the ellipse)
So, the equation of the tangent line is
$\Leftrightarrow y-y_1=\frac{x_1 y_1}{x_1^2-a^2}(x-x_1)$
$\Leftrightarrow y-y_1=\frac{x_1 y_1}{x_1^2-a^2} x-\frac{x_1^2 y_1}{x_1^2-a^2}$
$ \Leftrightarrow y y_1-y_1^2=\frac{x_1 y_1^2}{x_1^2-a^2} x-\frac{x_1^2 y_1^2}{x_1^2-a^2} $
$ \Leftrightarrow y y_1=\frac{y_1^2}{x_1^2-a^2}\left(x x_1\right)+y_1^2 \left[1-\frac{x_1^2}{x_1^2-a^2}\right]$