let $P \equiv(a t_1^2, 2 a t_1)$ & $Q \equiv(a t_2^2, 2 a t_2)$ By the previous formula for the point of intersection of tangent lives at $P$ & $Q$, we have
$T \equiv(a t_1 t_2, a(t_1+t_2))$
Equation of the line $S P$
$ y-0=\frac{2 a t_1-0}{a t_1^2-a}(x-a) $
$[\therefore S \equiv (a,0) and P \equiv (at_1^2,2at_1)]$
$\Leftrightarrow y=\frac{2 t_1^2}{t_1^2-1}(x-a) $
$\Leftrightarrow (t_1^2-1) y-2 t_1 x+2 a t_1=0$