Given a point P(a, b) and a circle,
$C:x^2 + y^2 + 2gx + 2fy + c = 0$
$a^2 + b^2 + 2ga + 2fb + c$
$a^2 + b^2 + 2ga + 2fb + c = 0 \Rightarrow$ P lies on the circle C
$a^2 + b^2 + 2ga + 2fb + c < 0 \Rightarrow$ P lies inside C
$a^2 + b^2 + 2ga + 2fb + c > 0 \Rightarrow$ P lies outside C