(x1y1)
(x2y2)
(x3y3)
(x−2(x1+x2)y−2(y1+y2))×(x2−x1)(y2−y1)
=−1
r=(x0−x2)2+(y0−y2)2
B2: (y0−2(y2+y3))(y3−y2)+(x0−2(x2+x3))×(x3−x2)=0
(x0,y0) is the centre of the circle which passes through p1, p2 and p3.
Solution: (x−1.5y+3.5)×−7=−1
y+3.5=7x−71.5
y−0.5=−7x+30.5
(x−4.5y−0.5)×71=−1
y0−0.5=−7x0+31.5
7x0−71.5−3.5=−7x0+32
750x0=7224+1.5+24.5
=7250
x0=5
∴y0=−7x0+32
=−7×5+32
=−3
∴ the centre of the circle is at (5, -3).
(x−x0)2+(y−y0)2=r2
i.e., (x−5)2+(y+3)2=25
Check to see if (9, -6) lies on this circle.
(9−5)2+(−6+3)2=16+9=25
GENERAL FORM C:x2+y2+2gx+2fy+c=0
since P1 lies on C ⇒x12+y12+2gx1+2fy1+c=0
x22+y22+2gx2+2fy2+c=0
x32+y32+2gx3+2fy3+c=0
(x2−x)(y2−y)×(x1−x)(y1−y)
=−1
(x−x1)(x−x2)+(y−y1)(y−y2)=0
x2+y2−(x1+x2)x−(y1+y2)y+(x1x2+y1y2)=0
x2+y2+2gx+2fy+c=0
P(a, b)
C:x2+y2+2gx+2fy+c=0
r=g2+f2−c
P is inside the circle if and only if
(a+g)2+(b+f)2<g2+f2−c
a2+b2+2ag+2bf+c<0
C:x2+y2+2gx+2fy+c=0
a2+b2+2ga+2fb+c
a2+b2+2ga+2fb+c=0⇒ P lies on the circle C
a2+b2+2ga+2fb+c<0⇒ P lies inside C
a2+b2+2ga+2fb+c>0⇒ P lies outside C