y2=4ax;
y2=−4ax;
x2=4ay;
x2=−4ay
Consider the general quadratic y=ax2+bx+c, where a=0.
y=a[x2+abx+ac]
=a[(x+2ab)2−4a2b2+ac]
=a(x+2ab)2−4ab2+c
y=a(x+2ab)2−(4ab2−4ac)
i.e., y+4ab2−4ac=a(x+2ab)2
This is the form y−k=a(x−h)2
where, k=4a4ac−b2andh=2a−ba>0
α−k=∣l−k∣=k−l
⇒α+l=2k
P≡(x,α)
y−k=a(x−h)2
α−k=a(x−h)2
⇒(x−h)2=aα−k⇒x=h±aα−k.
P≡(h+aα−h,α)
PF=aα−h
Pl=α−l
PF=Pl⇒aα−k=(α−l)2−(i)
(i) →l=2k−α
Putting in (ii) ⇒aα−k=[α−(3k−α)]2
⇒α−k=a⋅4(α−k)2
⇒α−k=4a1[∵α−k=0]
⇒α=k+4a1
∴l=2k−(k+4a1)=k−4a1
So, for the parabola y−k=a(x−h)2,
the vertex is at (h,k)
Focus is at (h,k) = (h,k−4a1
and directrix is the line y=l
i.e., y=(k−4a1)
Ellipse: a2x2+b2y2=1
a>b,c2=a2−b2
Consider the line:
x=ca2>a(∵ca>1)
Distance of P(x,y) on the ellipse
to F1≡(c,0)
PF1=(x−c)2+y2
⇒PF12=(x−c)2+y2
=x2−2cx+c2+y2[y2=b2(1−a2x2)]
=x2−2cx+c2+b2(1−a2x2)
=(1−a2b2)x2−2cx+c2+b2
=a2a2−b2x2−2cx+a2(∵c2+b2=a2)
=a2c2x2−2cx+a2
=(acx−a)2=a2c2(x−ca2)2
∴PF12=(ac)2Pl2
⇒PF1=acPl1=ePl1
∴PlPF1=e
Similarly for te line x=−c−a2, the ratio =e
Then lines x=±ca2 are called the directrices of the ellipse
a2x2+b2y2=1 with a>b.
we can define ellipse (hyperbola) using directory Lets take a conic section having a vetex at (0,0), focus on the x-axis and directrix a line parallel to to y-axis.
Let’s find the locus of points P such that PlPF=e← constant
Since V=(0,0) lies on the curve,
VRVf=e′⇒Ve=ef
∴ the line l is x=e−f
PF2=e2Pl2
(x−f)2+y2=e2(x+ef)2
⇒x2−2fx+f2+y2
=(ex+f)2=e2x2+2efx+f2
⇒(1−e2)x2−2f(1+e)x+y2=0
Putting p=f(1+e), we get
(1−e2)x2−2px+y2=0
If e=1, we get y2=2px, which is a parabola.
If e<1,a2x2−2px+y2=0
⇒x2−a22px+a2y2=0
⇒(x−a2p)2−a4p2+a2y2=0
⇒(x−a2p)2+a2y2=a4p2
which is equation of the ellipse
Special case : e=0 gives
x2−2px+y2=0
which is equation of a circle.
If e>1,
(e2−1)x2+2px−y2=0
which is equation of a hyperbola.
∴PF12=x2−2cx+c2+a2b2x2−b2
=(1+a2b2)x2−2cx+(c2−b2)
=a2c2x2−2cx+a2
=(acx−a)2=(ac)2(x−ca2)2
=e2Pl2
∴PlPF1=e>1
So, th line x=±ca2 are the directrix of the hyperbola
a2x2−x2y2=1.