$P \equiv\left(h+\sqrt{\frac{\alpha-h}{a}}, \alpha\right) $
$P F=\sqrt{\frac{\alpha-h}{a}} $
$P l=\alpha-l$
$
P F=P l \Rightarrow \frac{\alpha-k}{a}=(\alpha-l)^2-(i)
$
(i) $\rightarrow l=2 k-\alpha$
Putting in (ii) $\Rightarrow \frac{\alpha-k}{a}=[\alpha-(3 k-\alpha)]^2$
$ \Rightarrow \alpha-k=a \cdot 4(\alpha-k)^2 $
$ \Rightarrow \alpha-k=\frac{1}{4 a} \quad[\because \alpha-k \neq 0] $
$ \Rightarrow \alpha=k+\frac{1}{4 a}$
$ \therefore l=2 k-\left(k+\frac{1}{4 a}\right)=k-\frac{1}{4 a}$