Let $P(x, y)$ be any point on the parabola. Then the distance of $P$ from the focus $F(a, 0)$ is equal to the perpendicular distance of $P$ from the directrix : $x=-{a}$
ie. $\quad P M=P F$
$ \text { Now, } \quad P M=|x+a| $
$ \quad P F=\sqrt{(x-a)^2+y^2} $
$\text { So, } \sqrt{(x-a)^2+y^2}=|x+a|$
$ \Rightarrow(x-a)^2+y^2=(x+a)^2$
$$\Rightarrow \quad x^2-2 a x+a^2+y^2=x^2+2 a x+a^2$$